
1

Autopoietic Cognitive Edge-cloud Services

ranche

Deliverable 3.1
ACES Data and Knowledge Model

Grant Agreement Number: 101093126

Autopoietic
Cognitive Edge-cloud Services

 D4.1 – Goal representations corresponding to SLAs and SLOs for use in AI-/ML-/ swarm-based methodology
realizing autonomy and actionability

Page 2 of 49 © 2023-2022

Autopoietic Cognitive Edge-cloud Services

Autopoietic Cognitive Edge-cloud Services

Project full title Autopoietic Cognitive Edge-cloud Services

Call identifier HORIZON-CL4-2022-DATA-01

Type of action RIA

Start date 01/ 01/2023

End date 31/12/2025

Grant agreement no 101093126

Funding of associated partners

The Swiss associated partners of the ACES project were funded by the Swiss State Secretariat for
Education, Research and Innovation (SERI).

D3.1 – ACES Data and Knowledge Model

Author(s)

Felix Cuadrado, Javier Andión, José M. Blanco, Diego Martín, Loris
Cannelli, Melanie Schranz, Panagiotis Kapsalis, Fernando Ramos, João

Amado, Melanija Vezocnik, Timotej Gale, Thien Duc Nguyen, Nabil
Abdennadher, Konstantin Skaburskas

Editor Felix Cuadrado

Participating partners UL, LAKE, INESC-ID, HIRO, IDSIA, MARTEL, SixSq

Version 2.0

Status Complete

Deliverable date M12

Dissemination Lvl PU - Public

Official date 31 December 2023

Actual date 20 December 2023

3

Autopoietic Cognitive Edge-cloud Services

D3.1 – ACES Data and Knowledge Model Page 3 of 49 © 2023

Executive Summary
Deliverable D3.1 – ACES Knowledge and Data Model of the ACES project presents the outcome from
WP3 in identifying the information that will be required by the ACES platform to perform its
management functions and capture it into a knowledge model that can be rich and usable by multiple
reasoning agents. The approach described in this document aims to bridge existing gaps by offering
a robust and adaptable framework to facilitate autopoietic system operations.

The ACES platform presents several unique characteristics in the edge-cloud continuum; the
hardware execution infrastructure will be a collection of EMDCs (Edge Micro Data Centre), that offer
disaggregated hardware resources for execution. Applications will run over a distributed Kubernetes
infrastructure. The document describes the architecture for data collection within the ACES
ecosystem, discussing the metrics pipeline architecture, tools for telemetry and collection, and
providing specific details of the metrics and data that can be extracted from the platform.

Taking as reference these identified raw information sources the document evaluates research
proposals, standards, and industry specifications to capture that data into an actionable model. In
addition to that, the techniques for data cleaning, knowledge inference and creation from the base
data is also presented. This includes time series analysis techniques for metrics processing,
dependency and correlation analysis from multiple sources, and specific processing techniques to
capture features relevant to the non-functional aspects of the system.

The central part of the deliverable describes the ACES Knowledge Model. The section discuses
inherent challenges to the ACES platform for knowledge modelling, and presents a base model
composed of three main elements: the supply (services execution platform), the demand
(microservice and FaaS based applications), and the runtime (real time and historical status of the
supply elements). To complement that information the deliverable also outlines the ACES agents that
will consume this information, identifying their based types and their roles in the system.

The deliverable wraps up by discussing the main conclusions and outlines the next steps in WP3
regarding the perception of ACES agents towards the managed environment.

4

Autopoietic Cognitive Edge-cloud Services

D3.1 – ACES Data and Knowledge Model Page 4 of 49 © 2023

Disclaimer

This document contains material, which is the copyright of certain ACES contractors, and may not be
reproduced or copied without permission. All ACES consortium partners have agreed to the full
publication of this document if not declared “Confidential”. The commercial use of any information
contained in this document may require a licence from the proprietor of that information. The
reproduction of this document or of parts of it requires an agreement with the proprietor of that
information., according to the provisions of the Grant Agreement and the Consortium Agreement
version 3 – 29 November 2022. The information, documentation and figures available in this deliverable
are written by the Autopoiesis Cognitive Edge-cloud Services (ACES) project’s consortium under EC
grant agreement 101093126 and do not necessarily reflect the views of the European Commission. The
European Commission is not liable for any use that may be made of the information contained herein.

The ACES consortium consists of the following partners:

No PARTNER ORGANISATION NAME ABBREVIATION COUNTRY

1
INSTITUTO DE ENGENHARIA DE SISTEMAS E

COMPUTADORES, INVESTIGACAO E
DESENVOLVIMENTO EM LISBOA

INESC ID PT

2 HIRO MICRODATACENTERS B.V HIRO NL

3 TECHNISCHE UNIVERSITAT DARMSTADT TUD DE

4 LAKESIDE LABS GMBH LAKE AT

5 UNIVERZA V LJUBLJANI UL SI

6 UNIVERSIDAD POLITECNICA DE MADRID UPM ES

7 MARTEL GMBH MAR CH

8 SCUOLA UNIVERSITARIA PROFESSIONALE DELLA
SVIZZERA ITALIANA IDSIA CH

9 INDIPENDENT POWER TRANSMISSION OPERATOR SA IPTO EL

10 DATAPOWER SRL DP IT

11 SIXSQ SA SIXSQ CH

5

Autopoietic Cognitive Edge-cloud Services

D3.1 – ACES Data and Knowledge Model Page 5 of 49 © 2023

Document Revision History

DATE VERSION DESCRIPTION CONTRIBUTIONS

15/09/2023 1.0 Table of contents UPM

29/9/2023 1.1 Updated ToC and initial section
assignments UPM

16/10/2023 1.2 Updated structure after
Ljubljana workshop discussions UPM

20/10/2023 1.3 Input to the sections 4.2 and
4.3 LAKE

25/10/2023 1.4
Section on Framework

Language and Tools goes to
D4.1

UPM, LAKE

27/10/2023 1.4 Section 4.2 IDSIA

31/10/2023 1.5

Refined structure and outlines
of chapters and sections, initial

contributions for several
chapters

UPM, LAKE, MAR

30/11/2023 1.8
Full draft version of chapters
and subchapters, ready for

internal review

UPM, LAKE, MAR, SIXSQ,
INESC, TUD

8/12/2023 1.9 Internal Review Comments MAR, SIXSQ

15/12/2023 2.0 Complete full version after
applying reviewer comments UPM, UL, MAR

20/12/2023 2.1 Final review INESC

6

Autopoietic Cognitive Edge-cloud Services

D3.1 – ACES Data and Knowledge Model Page 6 of 49 © 2023

Authors

AUTHOR PARTNER

Felix Cuadrado, Javier Andión, José M. Blanco,
Diego Martín UPM

Loris Cannelli IDSIA

Melanie Schranz LAKE

Panagiotis Kapsalis MARTEL

Fernando Ramos, João Amado INESC ID

Melanija Vezocnik, Timotej Gale UL

Thien Duc Nguyen TUD

Nabil Abdennadher, Konstantin Skaburskas SixSq

Reviewers

NAME ORGANISATION

Panagiotis Kapsalis MAR

Vito Chianchini MAR

Nabil Abdennadher SixSq

7

Autopoietic Cognitive Edge-cloud Services

D3.1 – ACES Data and Knowledge Model Page 7 of 49 © 2023

List of terms and abbreviations

ABBREVIATION DESCRIPTION

ACES Autopoiesis Cognitive Edge-cloud Services

AI Artificial Intelligence

API Application Programming Interface

CPU Central Processing Unit

CRD Custom Resource Definition

CSI Container Storage Interface

DLRA Distributed Long Running Application

DNS Domain Name System

EMDC Edge Micro Data Centers

FL Federated Learning

GPS Global Positioning System

GPU Graphics Processing Unit

HCL HashiCorp Configuration Language

HTTP Hypertext Transfer Protocol

IDS Intrusion Detection System

LRA Long Running Applications

I/O Input/Output

IOPS Input/Output Operations per Second

IP Internet Protocol

JSON JavaScript Object Notation

8

Autopoietic Cognitive Edge-cloud Services

D3.1 – ACES Data and Knowledge Model Page 8 of 49 © 2023

KPI Key Performance Indicator

ML Machine Learning

NF Network Function

NFS Network File System

NVMe Non-volatile Memory Express

PromQL Prometheus Query Language

PV Persistent Volume

PVC Persistent Volume Claims

QoS Quality of Service

RAM Random Access Memory

R/W Read/Write

SLA Service Level Agreement

SLI Service Level Indicator

SLO Service Level Objective

WL Workload

WP Work Package

XAI Explainable Artificial Intelligence

XML Extensible Markup Language

9

Autopoietic Cognitive Edge-cloud Services

D3.1 – ACES Data and Knowledge Model Page 9 of 49 © 2023

Table of contents

1. Introduction ... 10

1.1 Background .. 10

1.2 Approach .. 10

1.3 Structure of the document ... 11

2. Cloud-edge Continuum Data Sources ... 12

2.1 Metrics Pipeline Architecture .. 12

2.2 Tools for telemetry and collection ... 13
2.2.1 Pull-Push Metrics Extraction Flow ... 13
2.2.2 Technologies ... 13
2.2.3 Extracted Data ... 14

2.3 Consolidated ACES metrics ... 15
2.3.1 Application-level Metrics .. 15
2.3.2 Node-level Metrics ... 17
2.3.3 Cluster-level Metrics .. 19
2.3.4 Events .. 20

3. From data to knowledge .. 22

3.1 Knowledge capture models and standards .. 22
3.1.1 Ontology languages for knowledge capture ... 22
3.1.2 Industry standards for edge continuum information .. 24
3.1.3 FIWARE NGSI-LD .. 27
3.1.4 Available datasets .. 28

3.2 Techniques for knowledge inference and creation .. 29
3.2.1 Time series analysis ... 30
3.2.2 Dependency Analysis .. 33
3.2.3 Network flow statistics processing ... 35
3.2.4 Feature extraction and modelling techniques for security and privacy 36

4. ACES Knowledge Model .. 38

4.1 Knowledge Model description .. 38
4.1.1 Modelling Challenges .. 38
4.1.2 Base concepts .. 40
4.1.3 Supply model .. 40
4.1.4 Demand model ... 42
4.1.5 Runtime model .. 44

4.2 ACES agent types ... 45
4.2.1 Demand Swarm Agents ... 45
4.2.2 Supply Swarm Agents ... 46
4.2.3 Orchestration of Swarm Agents with ML ... 46

5. Conclusion .. 47

References ... 48

10

Autopoietic Cognitive Edge-cloud Services

D3.1 – ACES Data and Knowledge Model Page 10 of 49 © 2023

1. Introduction

1.1 Background

The dynamic nature of edge computing environments, characterized by low latency requirements,
resource limitations, and demand volatility, presents distinct challenges. Existing models often lack
the flexibility to efficiently capture these challenges and implement solutions that can reason in an
effective way that improves overall system behavior. In response, the ACES data and knowledge
model is designed to bridge these gaps by offering a robust and adaptable framework to facilitate
autopoietic system operations.

The ACES project draws inspiration from the concept of autopoiesis [1], which refers to a system's
ability to maintain and renew itself autonomously. The project's ambition lies in creating a self-
managing architecture that proactively responds to external and internal variations and evolving
service requirements [1]. Central to this ambition is a knowledge model that effectively captures the
diverse types of data that are generated in the ACES platform, and can integrate them into a
complex, interconnected model that contains all the relevant features for ACES agents and Machine
Learning components to perform its function and achieve autopoietic behavior to the platform.

This deliverable reports the work primarily undertaken in WP3 - Data Acquisition, Knowledge
Generation and Organization of the ACES project, in particular the effort from tasks T3.1 – From Data
to Knowledge and T3.2 – Perceiving the Environment over the first year of the project. The
information is further complemented with the overall definition of the ACES architecture, as reported
in D2.1 - ACES Architecture definition (M12), and the ACES action library, together with the initial
definition of agent approaches, as reported in D4.2 – Action language and Library (M12). These three
deliverables together constitute the first view of the autopoietic approach of ACES to address the
challenges behind the management of the cloud-edge continuum.

1.2 Approach

As the name of the deliverable implies, this document provides an analysis starting from the initial
data sources that are involved in the ACES ecosystem, to a knowledge model that can be referred to
and exploited by the different ACES components.

In order to obtain this model, the project has performed multiple activities. During the workshop
taking place in Darmstadt in the first half of the year, a blueprint for the ACES system was defined.
During this process a comprehensive set of potential metrics and autopoietic behavior was identified
and collected. These elements were fundamental for the identification of the data that should be
considered in the project. In addition to these, the members have performed thorough review of the
state of the art in scientific, technical and industrial contexts to identify the most relevant information
that needs to be considered, as well as the means for capturing and collecting that information.

On that basis, the WP has studied the main techniques for capturing that information into a
knowledge model that would be actionable by ACES agents. This deliverable reports the results of
this analysis, and the resulting core abstractions of a knowledge model that will be combined with the
different types of ACES agents to achieve the autopoietic characteristics of the system.

11

Autopoietic Cognitive Edge-cloud Services

D3.1 – ACES Data and Knowledge Model Page 11 of 49 © 2023

1.3 Structure of the document

The structure of the document follows the logical progression presented in the approach. We start
from the theoretical underpinnings to its practical application. It comprises the following sections:

Chapter 2 covers the Data Sources that can be collected from the ACES architecture. These are
expressed in the form of metrics of the runtime elements that form part of the overall ACES
architecture, as well as events that should be recorded and processed for further analysis. The
information is complemented with details on the architecture of the specific monitoring and data
collection components of the architecture. As information captured by telemetry systems can be in a
raw and hard to use state, data processing, cleaning and analysis techniques are also presented.
Moreover, an examination of the requisite architectural components and mechanisms for data
acquisition and the aggregation of metrics relevant to the ACES project are presented.

Chapter 3 explores the challenges from this transition from Data to Knowledge. The subsections
report a discussion on the models, standards, and methodologies employed for knowledge derivation
and synthesis within edge computing frameworks.

Chapter 4 presents the ACES Knowledge Model. This is the central outcome of this deliverable. The
chapter details the fundamental aspects of the knowledge model, encompassing the supply and
demand models and the operational runtime model crucial for the autopoietic operations of the ACES
platform. To complete this characterization, the section provides a definition of the types of agents
that will take advantage of this model and reason within the ACES platform.

The deliverable is completed with the main conclusions of this work, and an outline of next steps
within the work related to the perception of ACES environments.

12

Autopoietic Cognitive Edge-cloud Services

D3.1 – ACES Data and Knowledge Model Page 12 of 49 © 2023

2. Cloud-edge Continuum Data Sources
ACES components will gather telemetry data from EMDCs. To achieve this objective, we will focus on
the activities outlined in WP3 – "Data Acquisition, Knowledge Generation, and Organization." One of
the key deliverables within this work package is the ACES Metrics pipeline. This pipeline is specifically
designed to capture data from Kubernetes clusters, nodes, and applications hosted in EMDCs.
Therefore, our approach to build the pipeline will consider technologies related to Kubernetes
environments. Before delving into the technical components that will be utilized in the pipeline, it's
essential to highlight the data sources within EMDCs. We categorize these data sources into two
broad categories:

• Metrics in Kubernetes: System component metrics originated from Kubernetes components
like:

o Kube-controller-manager
o Kube-proxy
o Kube-apiserver
o Kube-scheduler
o Kubelet

• Application Metrics: Metrics scrapped from applications running in Kubernetes clusters in
target micro EMDCs.

• Network Metrics: These metrics are collected directly from the host network stack and/or
from the EMDC network switches.

The section is structured as follows. First, we present the Metrics pipeline architecture. Then, we
analyse the tools for telemetry and collection. Finally, we list the target ACES metrics.

2.1 Metrics Pipeline Architecture

The figure below illustrates the Metrics pipeline architecture followed in ACES:

Figure 1 Metrics Pipeline Architecture

In the context of the Metrics Pipeline Architecture, EMDCs' metrics are collected through open-source
monitoring systems within each EMDC, such as a Kubernetes cluster. These may also include metrics
collected outside the host, namely those from in-switch metric collectors. Additionally, an abstraction

13

Autopoietic Cognitive Edge-cloud Services

D3.1 – ACES Data and Knowledge Model Page 13 of 49 © 2023

layer exists as the "global" component, which consolidates metrics from the various "local" data
monitoring systems. The primary role of this "global" monitoring component is to gather and transmit
the extracted metrics to a metrics extraction job. This job is responsible for receiving the metrics and
forwarding them to a streaming component for further processing.

2.2 Tools for telemetry and collection

2.2.1 Pull-Push Metrics Extraction Flow

The ACES Metrics Pipeline follows a “pull” – “push” architecture, in particular Local Monitoring
modules are placed in every EMDC to extract telemetry data. Then local monitoring performs remote
write operation to expose the local metrics to a Global monitoring instance which is responsible to
assemble the metrics from EMDCs. Then a component pulls the metrics from Global monitoring and
produces them to a Streaming Module (Apache Kafka). This flow is depicted in the following figure.

Figure 2 Metrics Extraction flow

2.2.2 Technologies

The tools that are used for metrics collection are the following:

• Local Monitoring (Monitoring System in each EMDC): Prometheus1 and its building blocks
like alert-manager, kube-state-metrics, node-exporter, Prometheus-pushgateway,
Prometheus server, and network metrics (e.g., in-switch flow metrics).

• Global Monitoring (Prometheus Hierarchical Mode2): Hierarchical federation allows
Prometheus to scale to environments with tens of data centers and millions of nodes. In this
use case, the federation topology resembles a tree, with higher-level Prometheus servers
collecting aggregated time series data from a larger number of subordinated servers. To
enable federation mode it is needed to include the following lines of code to Prometheus
configuration file (Prometheus.yml)

Table 1 Activate Federation Mode in Prometheus

scrape_configs:
 - job_name: 'federate'
 scrape_interval: 15s

1 https://prometheus.io/
2 https://prometheus.io/docs/prometheus/latest/federation/

14

Autopoietic Cognitive Edge-cloud Services

D3.1 – ACES Data and Knowledge Model Page 14 of 49 © 2023

 honor_labels: true
 metrics_path: '/federate'

 params:
 'match[]':
 - '{job="prometheus"}'
 - '{__name__=~"job:.*"}'

 static_configs:
 - targets:
 - 'source-prometheus-1:9090'
 - 'source-prometheus-2:9090'

 - 'source-prometheus-3:9090'

• Metrics Scraper: Metrics from the micro datacenters are produced to a Streaming module
using Prometheus Kafka Adapter3, which is a service that receives Prometheus metrics through
remote write functionality into JSON and sends them to Apache Kafka (Streaming module)

Table 2 Remote write to Prometheus Kafka Adapter service

remote_write:
 - url: "http://prometheus-kafka-
adapter:8080/receive"

• Streaming Module: Confluent Kafka4 used and its building blocks:

o Confluent Kafka Broker: The Kafka broker is the most important component as it
maintains the topics and the different partitions.

o Apache Zookeeper: It is used to manage and coordinate the Kafka brokers in the
cluster.

o Confluent Control Center: Is a web-based tool for managing and monitoring Apache
Kafka in Confluent Platform. It provides a user interface that enables overview of
cluster health, topic and messages observation, Schema Registry configuration and
the development of ksqlDB queries.

2.2.3 Extracted Data

The extracted data are pipelined to a Streaming Module through the Metrics Scraper (Prometheus
Kafka Adapter) which is a service that receives Prometheus metrics through remote write operation
configured in Prometheus configuration and each metric is sent to Kafka broker periodically, (e.g.,
every 30 seconds). The schema that is used from Metrics Scraper is the following:

Table 3: Metrics Abstract Schema
{
 "namespace": "io.prometheus",
 "type": "record",
 "name": "Metric",
 "doc:" : "A basic schema for representing Prometheus metrics",
 "fields": [
 {"name": "timestamp", "type": "string"},

3 https://github.com/Telefonica/prometheus-kafka-adapter
4 https://www.confluent.io/

15

Autopoietic Cognitive Edge-cloud Services

D3.1 – ACES Data and Knowledge Model Page 15 of 49 © 2023

 {"name": "value", "type": "string"},
 {"name": "name", "type": "string"},
 {"name": "labels", "type": { "type": "map", "values": "string"} }
]
}

Table 4: Example Record

{
 "labels": {
 "__name__": "go_memstats_mcache_inuse_bytes",
 "instance": "prometheus-prometheus-pushgateway.default.svc:9091",
 "job": "prometheus-pushgateway"
 },
 "name": "go_memstats_mcache_inuse_bytes",
 "timestamp": "2023-11-27T13:36:40Z",
 "value": "4800"
}

2.3 Consolidated ACES metrics

Metrics collection enables the ACES platform to acquire real-time information about its current state.
These data and past metrics information represent the fundamental basis for making informed
workload placement decisions and adapting to environmental and demand changes.

Metrics can be categorized into three levels within the ACES platform hierarchy. At the first (top)
level, there are one or multiple clusters. Each cluster contains multiple nodes at the second level.
Nodes also contain multiple workloads at the third level. Considering these levels, we propose the
following categories of metrics: application-level, node-level, and cluster-level. At each level, we
specify the raw metrics that should be collected where feasible. Additionally, we offer some ideas of
metric aggregations and transformations that may be more beneficial than the raw metrics. It is
crucial to elucidate the rationale behind opting for raw metrics rather than aggregations. By collecting
metrics in their purest form, we can give the platform users the utmost flexibility to aggregate and
transform the data according to their specific business requirements, for example, when creating
SLIs. Moreover, the platform might initially employ one metric aggregation and later switch to a
different, more effective aggregation. If the platform were to collect only the aggregated form of the
metrics, such a transition would not be possible. To ensure smooth interoperability and adhere to a
standardized approach, we recommend collecting the specified metrics (and traces) in alignment with
the OpenTelemetry5 standard.

For each metric level, we have identified the following raw metrics and some example aggregations
and transformations.

2.3.1 Application-level Metrics

Application-level metrics represent the platform's most focused metrics, offering a detailed
perspective on the pod's state over time. This information is vital for confirming that the pod operates
as anticipated. In cases where deviations occur, these metrics assist in identifying necessary actions
to correct the situation and ensure optimal performance. Table 5 includes a list of application-level
metrics.

5 OpenTelemetry, https://opentelemetry.io/docs/

16

Autopoietic Cognitive Edge-cloud Services

D3.1 – ACES Data and Knowledge Model Page 16 of 49 © 2023

Table 5: List of application-level metrics.

METRIC METRIC NAME DESCRIPTION

Pod CPU
usage kube_pod_overhead_cpu_cores

Current pod CPU usage measured in
millicores. The rescheduler could take the
historical variability of this metric into
account to schedule the pod on a node
that has the resources needed to handle
the CPU usage spikes or usage that is
commonly higher than the requested
amount. Additionally, this metric could be
used in scaling decisions.
A possible transformation of this metric is
CPU percentage usage, where 100%
could either be the CPU request of the
CPU limit of the Pod.

Pod memory
usage kube_pod_overhead_memory_bytes

Memory usage of the pod measured in
bytes. This metric could be used in
scaling decisions.
Similarly, as the CPU usage, a
percentage-based transformation can be
created.

Pod GPU
usage kube_pod_overhead_gpu_cores Current pod’s GPU usage measured in

millicores.
Pod
ephemeral
storage
usage

ephemeral_storage_pod_usage_bytes The current pod’s ephemeral storage
usage measured in bytes.

Pod total
readiness
and health
checks - with
failure bool
label

kube_pod_status_ready
kube_pod_status_phase
kube_pod_status_reason

Each probe’s result is reported as a
metric. This metric could be used to
construct an SLI that is part of an SLO
addressing availability and fault tolerance.
The scheduler should take such metrics
into account and try to satisfy the SLOs.

Request
duration request_duration_milliseconds

The duration of the request. This metric
could be used to construct SLIs and
SLOs. The platform should try to achieve
the desired SLO by, for example, scaling
and moving some pods closer so that the
latencies between them are reduced. To
determine which part of the call chain to
optimize, the scheduler would require
trace information besides the metrics.
Some possible aggregations of this metric
are request duration per second,
percentage of total request durations that
are larger than 1 second, etc.

Total
requests and
no. of
concurrent
requests

requests_total

This metric could be used to construct
SLIs and SLOs. The platform should try to
achieve the desired SLO by, for example,
scaling and moving some pods closer so
that the latencies between them are
reduced. To determine which part of the
call chain to optimize, the scheduler

17

Autopoietic Cognitive Edge-cloud Services

D3.1 – ACES Data and Knowledge Model Page 17 of 49 © 2023

would require trace information besides
the metrics.
Based on the total requests metric, a
throughput metric can be constructed, for
example, the number of requests per
second.

Garbage
collection
metrics

memstats_gc_sys_bytes
memstats_last_gc_time_seconds
memstats_next_gc_bytes

If no memory limit is set, the platform
could detect memory leaks based on the
garbage collection results (along with
heap usage metrics).

It is important to note that for the ACES platform to fully understand the complexities and
interrelations of pods, relying solely on metrics is insufficient. In order to gain insights into
communication patterns, microservice call bottlenecks, and more, traces play a crucial role in
observability. Just like metrics, traces should adhere to the OpenTelemetry specification for
comprehensive data collection.

2.3.2 Node-level Metrics

Node-level metrics provide information on the current resource usage of the node, aiding in the
calculation of available resources per node, which plays an essential role in workload placement
decisions. Additionally, node-level metrics offer insights into the node's connectivity with other
nodes, resource costs, and node reliability. Table 6 lists node-level metrics.

Table 6: List of node-level metrics.

METRIC METRIC NAME DESCRIPTION

Node CPU
usage node_cpu_usage_seconds_total

Node’s CPU usage measured in
millicores.
Based on the node’s total CPU core
descriptor, the available CPU can be
calculated. The scheduler should take this
metric into account in order to place only
pods that request less than or equal
available CPU amount on such nodes.
Furthermore, the scheduler could, with the
CPU usage metric among other metrics,
ensure that the load is evenly spread
across nonelastic (edge or reserved)
nodes. In this case, the transformation to
the percentage-based CPU usage could
be used.

Node
memory
usage

node_memory_working_set_bytes

Node’s memory usage measured in bytes.
Based on the node’s total memory
descriptor, available memory can be
calculated. The scheduler should take this
metric into account to place only pods that
request less than or equal available
memory on such nodes. Furthermore, the
scheduler could, with the memory usage
metric, among other metrics, ensure that
the load is evenly spread across
nonelastic (edge or reserved) nodes.

18

Autopoietic Cognitive Edge-cloud Services

D3.1 – ACES Data and Knowledge Model Page 18 of 49 © 2023

Node GPU
usage node_gpu_usage

Current node’s GPU usage. How this can
be measured, highly depends on the
GPU’s manufacturer. The scheduler
should take this metric into account in
order to provide a sufficient amount of
GPU power to each pod. Furthermore,
Pods should be scheduled in a way that
they can take advantage of all the GPUs
available in the cluster.

Node
ephemeral
storage
usage

ephemeral_storage_node_usage_bytes

The current node’s ephemeral storage
usage measured in bytes. Based on the
node’s total ephemeral storage descriptor,
available ephemeral storage can be
calculated. The scheduler must ensure
that each pod has the requested amount
of ephemeral storage.

Node swap
usage node_swap_usage_bytes

Node’s swap usage measured in bytes.
The platform should try to either avoid or
minimize swap usage.

Node to
nodes
latency

node_latency_milliseconds

Each node could periodically perform
pings to other nodes in the cluster to
determine latencies, measured in
milliseconds, between them. Scheduler
can use this metric to schedule Pods that
frequently communicate or require low
latencies for their communication, closer
than the rest of the pods. Furthermore,
when performing periodic pings, some
pings might fail. Based on this
information, a voting algorithm can be
constructed that outputs the node’s
reliability. This information can be used by
the scheduler to place pods that can
easily handle disruptions on nodes that
are not as reliable and place pods that are
either critical or cannot gracefully handle
disruptions on nodes that are reliable.
Edge nodes are apparent candidates for
unreliability, along with spot nodes in the
cloud.

Node to
nodes
bandwidth
usage

node_bandwidth_bps

Each node could measure how much
egress bandwidth, measured in bps, is
being used. This information can be used
to calculate the available bandwidth, but
only if the following can be performed
without causing too many disruptions to
the running pods. Each node can
measure the maximum egress bandwidth
(or probably available bandwidth) to the
rest of the nodes, and it can ask other
nodes to gather information about the
maximum (available) ingress bandwidth.
The scheduler can use this information to
reduce the bandwidth usage between

19

Autopoietic Cognitive Edge-cloud Services

D3.1 – ACES Data and Knowledge Model Page 19 of 49 © 2023

nodes, but at the same time, ensure
required fault tolerance levels and provide
each pod the requested bandwidth.

Node cost node_cost_aps

Cloud provider’s node costs vary based
on many different factors. Each node in
the cloud should output how much it costs
per second to run it (measured in amount
per second). This should include IO,
storage, compute, and other costs which
should be reduced to a single cost metric.
Edge nodes would have to measure their
power usage, networking costs, amortized
hardware costs, maintenance costs, etc.,
and reduce this to a single cost metric.
The scheduler should use this metric to
reduce the operating costs, but at the
same time, take into account all the
required requirements (fault tolerance,
SLOs, etc.). For example, this could mean
reducing the load in the cloud in order to
reduce the required number of nodes,
which would result in lower cost or
deprioritizing edge nodes where the
electricity cost is high.

System call
statistics node_syscall_{type}_total

Number of system calls triggered per a
time interval, frequently called of a system
call, frequently called of a type of system
calls (e.g., open, read, write, exec, exist,
kill)

2.3.3 Cluster-level Metrics

As a cluster consists of many nodes, cluster-level metrics predominantly serve as aggregations of
node-level metrics. The utility of these metrics in workload placement and scaling decisions may
need to be revised, given that aggregations often simplify the underlying node-level specifics.
However, from the standpoint of platform administrators, these metrics could be monitored by means
of monitoring tools, such as the Grafana dashboard6, or directly in network switches. Table 7 shows a
list of cluster-level metrics.

Table 7: List of cluster-level metrics.

METRIC METRIC NAME DESCRIPTION

Network flow
types network_flow_type

Network metrics computed for different
flow types. Examples include [MAC src,
IP src], [IP src], [IP src, IP dst], and [5-
tuple]. Different flow types enable
different aggregation levels, from
coarser to finer-grained monitoring
modes.

Network flow
counters network_{type}_total Per-flow counters for the different flow

types. Examples include number of

6 https://grafana.com/grafana/dashboards/6417-kubernetes-cluster-prometheus/

20

Autopoietic Cognitive Edge-cloud Services

D3.1 – ACES Data and Knowledge Model Page 20 of 49 © 2023

packets, number of bytes, squared
number of bytes. Maintaining these
stateful counters in network switches
offers global visibility for all
communications at the EMDC level.

Network flow
statistics network_{type}_statistics

Unidirectional statistics, tracking
outbound traffic, including weight,
mean, std. deviation, time interval.
Bidirectional statistics, considering both
inbound and outbound traffic:
magnitude, radius, approx. covariance,
and correlation coefficient. Computing
different statistics enable support for
different monitoring applications (e.g.,
anomaly detection, malicious traffic
detection, traffic engineering, etc.)

Cluster total
resource
usage

cluster_cpu_usage_seconds_total
cluster_memory_working_set_bytes
cluster_gpu_usage
cluster_bandwidth_bps

An aggregated metric that is calculated
as a sum of node-level resource
usages. For example, total CPU usage,
total memory usage, total GPU usage,
total bandwidth usage, etc. This metric
could be useful, for example, if the goal
of the platform is to reduce the
bandwidth usage within the cluster. Or,
to provide an overview of the platform’s
resource usage which to provide an
overview of the platform’s resource
usage, which can be perhaps used to
ensure that the load is evenly
distributed across many clusters. Both
the aggregated metric and the
transformed percentage-based metric
can be considered.

Cluster total
cost cluster_cost_aps

An aggregated metric calculated as a
sum of node-level memory usages.
Provides an overview and can be used
to track the workload placement
optimization effectiveness.

Unhealthy
pods in the
cluster

pod_collector_zone_health
pod_collector_unhealthy_pods_in_zone

Number of unhealthy pods in the
cluster.

Unhealthy
nodes in the
cluster

node_collector_zone_health
node_collector_unhealthy_nodes_in_zone

Number of unhealthy nodes in the
cluster.

2.3.4 Events

Certain events could be pivotal in optimizing the operation of the ACES platform. These events could
encompass a spectrum of interactions ranging from service-initiated actions to security-related
events. Additionally, monitoring certain events in ACES could lay the groundwork for analytics,
enabling to gain insights into specific behaviors and refine the design and features. Table 8 lists
events that have the potential to be monitored in ACES.

21

Autopoietic Cognitive Edge-cloud Services

D3.1 – ACES Data and Knowledge Model Page 21 of 49 © 2023

Table 8 List of events.
EVENT DESCRIPTION

Failure or error

Failure or error events in the system are deemed most crucial as
they have critical implications for availability and stability.
Examples of such events are image retrieval errors or incorrect
configuration errors.

Workload eviction

During system operation, the orchestrator may terminate specific
pods due to several reasons, such as insufficient resources.
Monitoring and understanding these events are necessary to
optimize system configuration and resource misallocations.

Workload scheduling
Events related to scheduling (e.g., scheduling failure) provide
insight into resource provisioning and enable rectifying the
scheduling configuration or resource scaling.

Storage

Workloads and applications normally rely on external/volume
storage to store data and support runtime. Storage related
events indicate potential issues with mounting, attaching,
capacity or other general storage failures.

Network

Workloads, storage, pods, nodes, and clusters are generally
interconnected via a network. Network events, such as link down
event or bandwidth limit exceeded event, enable dynamic
reconfiguration, rescheduling, or more optimal traffic rerouting.

Workload/Application-specific
Workload and application events provide insight into
instrumented runtimes, which enable observability of state and
potential issues, e.g., application bugs or performance.

Node-specific

Node events provide insight into behaviour of nodes in the
system. Such events may relate to specific node issues (e.g.,
node unhealthy, node not ready, port conflict) or aid in
maintaining observability for other components (e.g., node
reboot event).

Cluster-specific

Cluster events provide insight into behaviour of clusters in the
system. Such events may relate to specific cluster issues (e.g.,
cluster control plane unhealthy) or aid in maintaining
observability for other components (e.g., cluster uptime).

22

Autopoietic Cognitive Edge-cloud Services

D3.1 – ACES Data and Knowledge Model Page 22 of 49 © 2023

3. From data to knowledge
After presenting the set of considered data sources that are being considered at ACES, in this section
we present the alternatives for capturing that knowledge. We first explore existing standards for
capturing that information in a cohesive, semantically expressive format that can be adjusted to the
requirements of the project. Following that, we present potential data processing techniques that can
take as input the raw metrics described in the previous section and transform them into the
knowledge required by agents to perform their reasoning.

3.1 Knowledge capture models and standards

In this section we analyze the existing alternatives for capturing the knowledge relevant for the ACES
agents. We explore both standards from the academic literature in the field of ontologies as well as the
main approaches followed by industry and research projects, in order to select the ideal abstractions
to capture all the relevant characteristics.

3.1.1 Ontology languages for knowledge capture

Ontologies are defined as a mean to formally model the relations and entities of a determined
structure or domain. That is, an ontology is to depict the internal structures that can include both
entities and relations. To develop and deploy them, several specialized languages have been used for
a long time [3]. At first, the languages used were nothing but variations of web languages, or even
web languages themselves, highlighting the connection of ontologies with the semantic web.
Amongst the ones that are web languages by themselves, it is possible to find XML (eXtended
Markup Language), RDF (Resource Description Framework), or RDF Schema. The main advantage of
using these is that they have no learning curve for anyone familiar with them. The downside, as
obvious as it is, is that they lack the specialization and precision that others might have. It is also
worth noting that these languages are built one upon another: RDF Schema upon RDF, and RDF upon
XML. This leads to each one being more expressive than the previous ones, having a more extensive
syntax means that they cover a larger ground.

At the other end of the spectrum, we find the more traditional ontology specification languages.
Among these we find Ontolingua, OKBC (Open Knowledge Base Connectivity), OCML (Operational
Conceptual Modeling Language), FLogic (Frame Logic), and LOOM [3]. Since these languages were
developed with the creation of ontologies in mind, they have many resources that are ontology-
oriented, including rules for reasoning, the ability of performing non-monotonic inferences, as well as
ensuring the desired level of expressiveness for the
underlying logic. Despite all this, some of the languages lack the pragmatism that would be desirable
for the quick development of ontologies and have been more focused on being a solid foundation to
ensure the correct performance of the ontologies that use them.

As a combination of all these previous languages it is possible to find the web-based ontology
specification languages. These languages, while maintaining the main core of web-based languages,
were introduced to have a much higher appeal to the development of ontologies that the traditional
ontology languages have. Among these is possible to find XOL (XML-based Ontology exchange
Language), SHOE (Simple HTML Ontology Extension), and OIL (Ontology Interchange Language).
These languages aimed at solving the issues that the previous categories had, i.e., web languages
lack of specialization, and traditional ontology languages lack of quick applicability. Usually, these
languages were developed as a subset of previous languages, as in the case of XOL, which takes a
subset of OKBC and includes some of the characteristics and syntax of XML, or OIL based on subsets

23

Autopoietic Cognitive Edge-cloud Services

D3.1 – ACES Data and Knowledge Model Page 23 of 49 © 2023

of RDF, and OKBC. This leads to them having more value from an ontological point of view yet being
more applicable than the pure web languages above.

Nevertheless, despite all of the above, the ontology languages that have become a key element in
the development of the modelling that represent ontologies are RDF Turtle7 and OWL (Web Ontology
Language)8, aside from all their offspring. The first one, RDF Turtle, stems from the RDF web
language incorporating a new syntax called Turtle that allows the RDF generated graph to be
processed in compact and plain text which includes abbreviations for the most common data types
and patterns that are usually used. It also provides compatibility with other languages such as
SPARQL following the W3C recommendations. On the other hand, OWL, that stems into OWL Lite,
OWL DL, and OWL Full (among others), is characterized for using a formal syntax akin to that of RDF
but has found its way into healthcare research. The language has gained an unusual level of traction
and has helped in the development of its second version, OWL 2, that included several improvements
proposed by the community. Among these advantages we find the compatibility with ontology
standards such as Protégé9, or established semantic reasoners such as Pellet10, HermiT11, or some
minor ones such as RacerPro12.

Such languages created to help with the development of ontologies are able to model “almost
anything”, one of the main reason that they are actually such a powerful and useful tool. But that also
has its own drawbacks, as the modelling of the specifications becomes a task of utmost importance
that can lead to certain critical failures if it is not addressed correctly. Because all of this, the
modelling of the specifications has become a hot topic for ontologies, which has seen some
interesting results in that respect. Some include the development of specification languages that
ensure the creation of ontologies without any kind of inconsistencies, errors, or ambiguity. An
example of this can be found in ReqDL[6], a language whose syntax was developed so engineers can
express the system requirements in a simple and easily understandable way, yet far away from the
issues derived from using natural language. In particular, the language is developed with the idea of
having the different requirements attached to different levels. That way it can distinguish, among
others, between the stakeholders requirements, the system requirements, and the component
requirements, while keeping the same syntax for all of them. This leads to a clear and streamlined
syntax that can capture the requirements without cluttering them and being able to formalize them
with ease.

This work of establishing the specifications is not only supported by specific ontology languages like
ReqDL above, but also uses ontologies themselves to cover the structure that the specifications
should have, dividing them into the different abstraction levels, and ensuring that the relations
created are the right ones. For that matter, the ontology usually provides support for a specific
domain and focus, ensuring that no question outside of the domain at hand goes into the
requirements specification. Furthermore, it helps with the formulation of competence questions that
constitute the validation process of any requirements specifications. After all of this, often an
ontology is created once the process has been followed. That means that the ontology created
captures all the requirements, and that those requirements have been modelled with all the benefits
that correspond to the usage of ontologies.

Similarly, the creation of ontologies has its own model for specifications, that while is not of use in the
capture of the requirements of any other domain, allows for the creation of ontologies that will

7 https://www.w3.org/TR/turtle/
8 https://www.w3.org/TR/owl-features/
9 https://protege.stanford.edu/
10 https://github.com/stardog-union/pellet
11 http://www.hermit-reasoner.com/
12 https://franz.com/agraph/racer

24

Autopoietic Cognitive Edge-cloud Services

D3.1 – ACES Data and Knowledge Model Page 24 of 49 © 2023

validate the specifications given. In that sense, it could be argued that this is a meta-modelling of the
specifications. This ontology modelling is supported by the W3C and, as such, it constitutes an
official modelling tool for the specifications of ontologies. Going into details, this provided model
introduces a series of modules that support the lexicon on which ontologies are defined, and a series
of tools to ensure the well-being of the ontology just created. The modules that constitute the lexicon
include tools to deal with the syntax and semantics, the decomposition, the variations and
translations, and the linguistic metadata. The other tools include the ability of using external
ontologies to the one being created, a method to use linguistic resources such as lexical nets, and a
way to create a relation between the lexicon chosen for the ontology and some basic languages such
as the Simple Knowledge Organization System, the Lexical Markup Model, and the Open Annotation
Model [4].

Despite ontologies being a great tool, they are far from perfect, as they usually require high expertise
or a deep knowledge of certain formalisms and frameworks to make them work correctly. With that in
mind it is possible to look for alternatives that help to capture knowledge on a more streamlined way,
and with less hassle involved. For that matter, one would need to address what part of the work that
ontologies do is going to be substituted. Because the way ontologies work is not only by capturing
the knowledge, but also ensuring its consistency and explicitating its structure. That is, one might
want to preserve the formal aspect that ontologies bring to the knowledge that they represent, or
maybe the interest will reside on making the relations that they represent widely, and quickly,
available. In the case that one might want to preserve the formal aspects, it is possible to be looking
at technologies that focus on sharing the inferences of the ontologies, that is, helping to show what
conclusions come naturally from the knowledge captured by the ontology. On sharing the semantic
knowledge hold by the ontologies, that is, to ensure the inferences made from an ontological
structure can be reused for other applications without uncertainty. On sharing group knowledge, that
is, to ensure that the right knowledge generated by ontologies taking place on a large scale is
selected, rather than mess around with the many different sources available. Nevertheless, this kind
of technologies is yet not widely available or has not been developed far from its formalisms. The
most extended one are the ones named as knowledge brokers[7]. Knowledge brokers are usually
seen as an intermediary between the different sources of information and can help to provide the
right data as needed, where and when needed. They work by transferring and exchanging knowledge
from where it is abundant to where it is lacking. This means that knowledge brokers are not the
originators of knowledge, but rather a technology to be used to capture knowledge that already
exists and, by its usefulness, needs to be transferred.

The most common theme around knowledge capture system is that they are based around the
application of ontologies[8]. This means that while many different systems based on the previous
approaches have been developed, they are always, at least, partially inspired by the ontological
approach. Besides using an ontology-inspired structure directly, other approaches reuse the
description logics developed for ontologies, thus capturing the formal intention of ontologies. All in all,
the knowledge capture alternatives to ontologies are just a differentiated application of them[9].

3.1.2 Industry standards for edge continuum information

This section describes a set of Kubernetes based edge management tools that support data
management platforms. In our context, Data management means a range of functionalities that
extract knowledge from telemetric data collected from EMDCs and data describing the specification
of the end-user applications. The data management platform to adopt in ACES will be used to

25

Autopoietic Cognitive Edge-cloud Services

D3.1 – ACES Data and Knowledge Model Page 25 of 49 © 2023

transform data into knowledge (semantic enrichment). In this subsection we present a selection of
edge management tools: Rancher13, Zededa14, Spectro cloud15, OCM16 and Nuvla17.

3.1.2.1 Rancher

Rancher is an open-source container management platform to deploy and manage Kubernetes clusters.
Rancher supports multiple Kubernetes distributions and provides full support for the two lightweight
Kubernetes platforms: K3s and RKE218.

The incorporation of Prometheus with Rancher enables Rancher to perform monitoring and alerting
functions on clusters. While Rancher lacks a native feature specifically designed for in-depth data
operations, the tool provides the flexibility to develop Rancher extensions, allowing users to customize
and enhance its capabilities according to their specific needs.

3.1.2.2 Zedada

Zededa’s platform is designed to enable the deployment of virtualized applications on edge devices.
The Zededa Edge solution comprises two key architectural components: EVE-OS and ZEDCloud.

EVE-OS boasts features such as broad hardware support, accommodating CPUs, GPUs, FPGAs, and
popular selections from AMD, Intel, NVIDIA, Xilinx, and ARM. Currently, EVE-OS is validated to operate
on 80 distinct hardware models and includes a fundamental open-source controller within Project
EVE.

The ZEDCloud, functions as the centralized management and control plane and employs an open
orchestration API to connect with EVE-OS deployed on distributed edge hardware. As for the data
management and as detailed in ZEDEDA web site, a user application is represented as a metadata
manifest. This manifest describes the various software pieces and how they are run on any given
ZEDEDA Edge Node. The Metadata manifest is typically defined by the application developer or
software provider. It describes the purpose of the application, the intended usage, and the required
resources and services to run it.

3.1.2.3 SpectroCloud / Palette

Spectro Cloud offers a cloud-native management platform named Palette designed to streamline the
deployment, administration, and scaling of Kubernetes clusters in various environments,
encompassing on-premises and multi-cloud configurations. The platform is geared towards providing
a cohesive and standardized management experience for Kubernetes clusters, irrespective of their
deployment locations.

Palette features a graphical user interface (GUI) that serves as an interface for research-oriented
data management, encompassing meticulous metadata management. The GUI provides users with a
visual platform for efficient and intuitive interactions with data, streamlining various tasks related to

13 https://www.rancher.com/
14 https://help.zededa.com/hc/en-us
15 https://www.spectrocloud.com/
16 https://open-cluster-management.io/
17 https://nuvla.io/ui/
18 https://docs.rke2.io/

https://docs.rke2.io/
https://help.zededa.com/hc/en-us

26

Autopoietic Cognitive Edge-cloud Services

D3.1 – ACES Data and Knowledge Model Page 26 of 49 © 2023

research data management. Moreover, Palette is equipped with an Application Programming Interface
(API) designed to expose data programmatically.

3.1.2.4 Kermada

Karmada, also known as Kubernetes Armada, serves as a Kubernetes management system that
allows the deployment of cloud-native applications across various Kubernetes clusters and cloud
environments without requiring modifications to the applications themselves. Leveraging Kubernetes-
native APIs and offering sophisticated scheduling capabilities, Karmada facilitates a genuinely open
and multi-cloud Kubernetes experience. Karmada is location agnostic and supports clusters in the
public cloud, on-prem, or edge.

Karmada lacks built-in data management capabilities. Prometheus can be employed to interact with
the API and gather valuable insights into the system's performance and health. While Karmada may
not have native data management features, its API compatibility and integration with tools like
Prometheus provide a pathway for users to extract and analyze relevant data for monitoring and
optimization purposes.

3.1.2.5 Nuvla

Nuvla is an edge and a container management platform built upon open-source software and open
standards. The Nuvla platform allows you to configure any number of Container-as-a-Service (CaaS)
(e.g. Docker Swarm, Kubernetes) endpoints. This means you can mix and match public clouds, private
clouds and infrastructure, as well as edge devices (running NuvlaEdge software, see details below).

The Nuvla platform exposes a powerful REST API. This API allows developers to integrate Nuvla into
third-party systems, script it and even use it as Infrastructure as code (IaC). This enables a simple
and effective edge-to-multi-cloud solution. The platform is application centric, hardware agnostic,
cloud neutral and container native. This allows end users to manage any containerized application
across a fleet of edge devices and container-orchestration engines.

The NuvlaEdge software aims to provide a platform for managing and orchestrating edge computing
resources. It helps organizations deploy and manage applications at the edge of the network
efficiently. This can be especially valuable in scenarios such as Industrial Internet of Things (IIoT),
smart cities, and other use cases where distributed computing and rapid data processing are critical.

Once installed, NuvlaEdge is a turn-key solution. From factory settings, you plug it in, power it up and
you are good to go. The automated and secured registration process ensures that each edge device
is yours and uniquely configured and initialized. This can even include an on-demand remote secured
VPN access gives you access to your devices and applications as you need it.

In addition, Nuvla supports a data management platform that leverages the positive attributes of S3-
based services and introduces a comprehensive global management system for metadata. The goal
is to enhance the efficiency of search functionalities across different service providers. In terms of
implementation, the model consists of three core Nuvla resources:

• data-object: This resource acts as a proxy for data stored in an S3 bucket/object from a
specific provider. It manages the lifecycle of S3 objects, simplifying data upload and
download processes.

• data-record: This resource allows users to add additional, user-specified metadata for an
object. Enabling the attachment of rich, domain-specific metadata to objects enhances the
precision of searching for relevant data.

27

Autopoietic Cognitive Edge-cloud Services

D3.1 – ACES Data and Knowledge Model Page 27 of 49 © 2023

• data-set: This resource defines dynamic collections of data-object and/or data-record
resources through filters. Administrators, managers, or users can define these collections,
providing a flexible and customizable approach to data organization.

Collectively, these resources establish a versatile data management framework applicable to a broad
range of use cases. The typical workflow involves creating a data-object (implicitly creating the S3
object), optionally adding metadata using a data-record object, and finally, finding and using the
relevant data-object resources included in a data set. Nuvla facilitates the "using" element by binding
data types to user applications capable of processing the data, offering seamless integration
between data management and application utilization.

3.1.3 FIWARE NGSI-LD

NGSI-LD19 is a standard designed to foster better interoperability and information exchange across
IoT platforms. The language has been standardized at the European Telecommunications Standards
Institute (ETSI). NGSI-LD builds upon the legacy of the NGSI-9/10 interface, which was initially
proposed in the FIWARE20 platform, a suite of public, royalty-free, and open-source software
components to create smart applications.

The "LD" in NGSI-LD stands for Linked Data, which is a method of publishing structured data so that
it can be interlinked and become more useful through semantic queries. NGSI-LD facilitates the
representation, exchange, and querying of context information across different systems. It leverages
the power of linked data and semantic web technologies, such as Resource Description Framework
(RDF) and Web Ontology Language (OWL), to enhance the capabilities of context-aware systems.
Moreover, models can be serialized through JSON-LD21 in several formats to ease its readability and
interoperability.

The core scope of NGSI is context information capture. The specification combines modelling
capabilities to identify context elements with a standardized API for context information management
that can be used to support a wide range of smart applications. Context information is flexible
enough, with context entities representing the state of any element; an entity could be anything from
a temperature sensor in a smart home to a Kubernetes cluster node.

Entities are the base information elements from the specification. An entity is represented by a unique
identifier (URI) and a type. For example, a node could be an entity with a unique ID and a type such as
"Node". Properties are the attributes or characteristics of an entity. They can include basic data types
such as numbers or strings, but can also be more complex, including structured values or even
arrays. For instance, a vehicle's speed can be a property with a numeric value. Relationships define
how entities are connected to each other or to other resources. A relationship is also a type of
property, but instead of a direct value, it points to another entity or an external resource. These three
concepts are shared by all linked data specifications, such as the widely popular property graph
model supported by the query language Cypher and databases such as Neo4J22 or Cypher23.

The combination of extensibility, interoperability, and compatibility of this specification make it ideally
suited to be used as the base abstraction for the ACES knowledge model.

19 https://www.etsi.org/deliver/etsi_gs/CIM/001_099/006/01.01.01_60/gs_CIM006v010101p.pdf
20 https://www.fiware.org/
21 https://json-ld.org/learn.html
22 https://neo4j.com/
23 https://opencypher.org/

28

Autopoietic Cognitive Edge-cloud Services

D3.1 – ACES Data and Knowledge Model Page 28 of 49 © 2023

3.1.4 Available datasets

As final data reference points for defining the ACES knowledge model we have evaluated the most
important industrial datasets that provide metrics and details about existing distributed computing
infrastructure. Ideally we would use sources that are of the same nature of the ACES platform, but its
novelty, and high level of heterogeneity make it impossible for any existing source to be taken as-is.
Nonetheless, these datasets can provide unvaluable for guiding the design of our platform.

Datasets contain workload information that can be adapted to train and refine the agent models that
will constitute the orchestration components of ACES before the full system is prototyped, and actual
metrics can be obtained. For this purpose, we have evaluated the most related datasets publicly
available. Within the ACES project we are defining a reference EMDC to have a baseline system upon
which the whole architecture will be executed. Datasets should describe results taken from an
infrastructure that is similar up to some extent to the ACES EMDC we are targeting in the project. To
do so, datasets should have information about the state of hardware resources, e.g. memory,
storage, CPU, GPUs and other specialized dedicated hardware. The execution platform should be
similar to the selected Kubernetes specification that is described in our ACES D2.1 document.
Additionally, from a workload point of view, these datasets should contain information about how
many resources of each type were available, to characterize the maximum supply, as well as the
amounts of each resource requested, and the duration for these resource requests.

We checked several datasets, and the majority of ML-oriented sets are far from the targeted ACES
domain. UCI Machine Learning repository24 provides a collection of several datasets, but none of
them are applicable to ACES: The same applies to both KITTI25 a vision dataset for autonomous
driving, and UADETRAC26, a Real-world multi-object detection and multi-object tracking dataset. The
NSL-KDD27 dataset is more closely related to the ACES domain, as it provides network security
traces, but they are not widely applicable to the whole runtime platform.

There are two main sources of datasets that provide highly valuable data for ACES. These are
provided by two of the main public cloud providers: Alibaba and Microsoft Azure. We provide a short
summary of each dataset repository:

• Alibaba Cluster Trace Program28: This program is published by Alibaba Group. By providing
cluster trace from real production, the program helps the researchers, students and people
who are interested in the field to get better understanding of the characteristics of modern
internet data centers (IDC’s) and the workloads. So far, four versions of traces have been
released: cluster-trace-v2017, cluster-trace-v2018, cluster-trace-gpu-v2020, and cluster-
trace-microservices-v2021.

• Microsoft Azure Traces29: This repository contains public releases of Microsoft Azure traces
for the benefit of the research and academic community. There are currently two classes of
traces: VM Traces and Azure Functions Traces.

These datasets provide large-scale metrics with the internal details of resource capabilities and
workloads of large-scale datasets. While these are not identical to the ACES platform, they do
present important similarities in the type of resources, and contain the dynamics and patterns found

24 https://archive.ics.uci.edu/
25 https://www.cvlibs.net/datasets/kitti/
26 https://detrac-db.rit.albany.edu/
27 https://www.unb.ca/cic/datasets/nsl.html
28 https://github.com/alibaba/clusterdata
29 https://github.com/Azure/AzurePublicDataset

29

Autopoietic Cognitive Edge-cloud Services

D3.1 – ACES Data and Knowledge Model Page 29 of 49 © 2023

in real user workloads. Therefore, they will be used during the initial stages of the project to aid in
the knowledge model design, as well as in the preparation of synthetic datasets to train and tune the
models.

The datasets present some differences, but we provide for reference further details of the most
recent one from Alibaba (2023, where a mixed CPU-GPU workload is shared):

• The file openb_pod_list_default.csv contains 8152 tasks submitted to the GPU cluster,
listing their resource specifications, QoS, phase and creation/deletion/scheduled times.

• The files openb_pod_list_*.csv emphasizes certain types of workloads such as CPU-only
tasks, GPU-sharing tasks, etc.

Table 9 Sample dataset from Alibaba 2023 dataset

The traces provide fine-grained information. For reference, entries are listed as pods, where each
entry has following specification:

• cpu_milli: Number of CPUs requested (in milli)
• memory_mib: Main memory requested (in MiB)
• num_gpu: Number of GPUs requested (integers from 0 to 8)
• gpu_milli: Detailed GPU requested for GPU-sharing workloads (i.e., num_gpu==1) (in milli).
• gpu_spec: Required GPU types, For example, nan means no GPU type constraints while

V100M16|V100M32 means the task can run on NVIDIA V100 with either 16GB VRAM or
32GB VRAM.

• qos: Quality of Service (e.g., Burstable, Best Effort (BE), Latency Sensitive (LS))
• pod_phrase: Succeeded, Running, Pending, Failed
• creation_time: Timestamp of creation (in seconds)
• deletion_time: Timestamp of deletion (in seconds)
• scheduled_time: Timestamp of being scheduled (in seconds)

3.2 Techniques for knowledge inference and creation

The collected metrics and external accessory datasets contain information that is often too low level
to be usable by the ACES components. Agents need well structured, and formatted features that can
be high-level enough to enable understanding the runtime behavior of the different services,
understanding past performance and enabling autopoietic decision making. In this section we briefly
describe the main data processing techniques that will be used in the project as part of the data
management flows to feed our knowledge model.

30

Autopoietic Cognitive Edge-cloud Services

D3.1 – ACES Data and Knowledge Model Page 30 of 49 © 2023

3.2.1 Time series analysis

In general, when a source of data is accessed in a regular manner over time, the information that can
be extracted from it is not only limited to the data samples themselves. The relationship between
those samples can also contain valuable information. When those samples are structured as a
sequence of measurements sorted by the time they were obtained, they form what is called a Time
Series.

A time series is a sequence of data points collected and recorded at regular intervals over a period of
time. This collection inherently captures the temporal dependencies and patterns within the data, and
this temporal dimension holds crucial information for understanding how the underlying process or
phenomenon evolves. When data are collected from a monitoring environment, this data structure
emerges naturally, as the measurements are taken at regular intervals. One of the most common
objectives of system monitoring is to detect anomalies in the system's behavior, and time series
analysis is a powerful tool for this task. Also, time series analysis is a fundamental tool for forecasting
future values of time series, which is a key component of many predictive systems.

Time series usually describe the temporal evolution of a single variable; in that case the series is
known as univariate. Although it is possible to combine several series into one that represents several
variables, in that case they are considered multivariate series. This approach not only creates a much
more complex structure, but also can be used to model the temporal interdependency between the
variables. The behavior of some variables may have a big impact on other variables; for example, the
temperature of a room will have a great correlation with the temperature of a device located in that
room. In the case of this project, several variables are monitored, for example, Prometheus will be
used to collect metric about CPU usage, memory usage, network traffic, etc. All these metrics are
collected at the same time, so they can be combined into a multivariate time series.

Time series can be represented as a simple sequence of samples but are usually represented as a
sequence of tuples (t, x), where t is the time at which the sample was taken, and x is the value of the
sample. With this representation, the information stored in the series is enhanced, as the temporal
dimension is explicitly represented. This allows to perform operations on the time dimension, for
example, to calculate the time difference between two samples. In addition, it facilitates the
identification of missing samples, which is a common problem in time series data. The time difference
between two samples, which is usually constant, is called the sampling period or, in some cases the
sampling frequency, calculated as the inverse of the sampling period.

From a mathematical point of view, a time series is a stochastic process, which is a collection of random
variables indexed by time, and it can be represented as a function of time. The time series can be
represented as a function of time, 𝑋(𝑡), where 𝑡	is the time index and 𝑋	is a random variable. In practical
cases, the time series is not a continuous function, but a discrete function, as the samples are taken at
discrete time intervals. However, most of the time series and continuous function analysis techniques
can be applied to discrete time series with little or no modification.

3.2.1.1 Applications of Time Series Analysis

Time series analysis is a very broad field, and it has many applications in different domains. In this
section, some of the most common applications of time series analysis are presented.

• Forecasting: Forecasting is the most common application of time series analysis. The goal of
forecasting is to predict future values of the time series. The forecasting techniques use the
information contained in the time series to predict the future values of the time series.

31

Autopoietic Cognitive Edge-cloud Services

D3.1 – ACES Data and Knowledge Model Page 31 of 49 © 2023

• Anomaly detection: The goal of anomaly detection is to detect abnormal behavior in the time
series. For example, in the case of systems monitoring, it is very important to be able to
detect unusual function of the system, as it allows one to detect problems in the system
before they become critical.

• Clustering: The goal of clustering is to group the time series into different clusters. Each
cluster contains time series that are similar to each other in some way, usually not known in
advance. When applied to monitoring, it allows to group different components of the system
that behave in a similar way. Once these groups are identified, it is possible, for example, to
detect problems in some components of the system by analyzing the behavior of other
components in the same group.

• Visualization: Although visualization is not always considered an application or a final goal, it
is a very important part of time series analysis. Understanding how a system behaves over
time is not an easy task, and time series visualization can be a very powerful tool for this.

• Summarization: The goal of summarization is to condense the information contained in the
time series into a smaller representation. This is useful when the time series is very large, and
it is not possible to analyze it in its entirety or when it is necessary to compare several time
series.

3.2.1.2 Time Series enhancement techniques

Time series are powerful tools for analyzing the temporal evolution of a system, but they are not
always easy to interpret. The information contained in a time series is not always easy to extract, and
it is often necessary to apply some enhancement techniques to make the information more
accessible. In this section, some of the most common enhancement techniques are presented.

Smoothing: In some cases, the time series may contain a lot of noise, which makes it difficult to
extract the information contained in the series. Or the sampling frequency may be very high, and the
number of samples can shadow the information contained in the series. In these cases, it is useful to
apply some smoothing techniques to reduce the noise and make the information more accessible.
There are many smoothing techniques, but the most common ones are moving average and
exponential smoothing. The result of applying a smoothing technique is a new time series in which
high-frequency components have been removed.

Detrending: The trend of a time series refers to the long-term movement or pattern in the data over
time. It represents the underlying, gradual changes in the data that occur due to various factors such
as component degradation, demographic changes, etc. The trend is usually not of interest, as it does
not contain much information about the system behavior. In fact, it is usually considered a source of
noise because it can hide the information contained in the series. In those cases, it is useful to
remove the trend from the series. The result of removing the trend is a new time series in which the
long-term movement has been removed. To remove the trend, it is necessary to estimate the trend
function and then subtract it from the original series. The trend function can be estimated using
different techniques; the most common ones are linear regression and moving average.

Seasonal Decomposition: Seasonality in a time series refers to regular and predictable patterns or
fluctuations in the data that occur at specific intervals of time. These patterns often repeat over a
short-term period, such as a day, week, month, or a specific season, and are typically associated with
external factors or recurring events. For example, it is common to observe a weekly seasonality when
working with systems with users. The behavior of those users is usually different during the week and
during the weekend. As with the trend, the seasonality is something predictable, that once it is
identified, it can be removed from the series. In some cases, a time series can have several seasonal
components; considering again human behavior, it usually presents a weekly seasonality, but also a
daily seasonality as the lunch time or resting hours are repeated every day. To identify these
seasonal components, most common techniques involve analyzing the data in the frequency (or

32

Autopoietic Cognitive Edge-cloud Services

D3.1 – ACES Data and Knowledge Model Page 32 of 49 © 2023

spectral) domain to identify those periodic components which contribute to seasonality. The most
common technique for this purpose is the Fast Fourier Transform (FFT), which can decompose the
time series into its constituent frequencies.

Time Series Decomposition: The two previous techniques are usually presented together to create a
set of three functions: one for the trend component, one for the seasonal component and one for the
residual component. The residual component is the part of the series that is not explained by the
trend or the seasonal component. This residual component is usually considered the most interesting
part of the series as it contains the information about the system behavior that is not directly
explained by the previous data.

3.2.1.3 Combining Time Series Data

In the context of this project, various variables are monitored, for instance, Prometheus will be
employed to gather metrics on CPU usage, memory usage, network traffic, etc. Each of these metrics
generates a time series for its respective variable, and they can collectively form a multivariate time
series. When all the series share the same sampling frequency, the resultant multivariate time series
is called a regular multivariate time series. However, it is possible that the sampling frequency varies
for each variable, e.g. some variables being obtained every second and others every minute. In those
cases, the resulting multivariate time series is called an irregular multivariate time series. To work with
these irregular series, it is necessary to process the sampling frequency of each variable to create a
regular multivariate series.

Resampling is the process of altering the sampling frequency of a time series, and it can either
increase or decrease the sampling frequency. In the aforementioned case, resampling is one of the
processes used to create a regular multivariate time series. To achieve a target frequency some
series will need to increase their sampling frequency, whereas other will need to decrease it.
Increasing the sampling frequency is called upsampling, while decreasing it is called downsampling.
Downsampling is typically a straightforward process, involving the removal of some samples from the
series. However, upsampling is a more complex process that involves creating new samples to fill the
gaps between the original samples. This process of generating new samples is known as interpolation
and can also be employed to fill missing samples in a time series.

Choosing the target sampling frequency involves considering the trade-off between upsampling and
downsampling. When upsampling is performed, the new samples are synthetic estimates and may not
be as accurate as the original samples. Conversely, when downsampling is carried out, some samples
are removed, resulting in the loss of some information.

3.2.1.4 Other Cleaning and Preprocessing Techniques

Time series analytics can be a very powerful tool for analyzing the behavior of a system, but usually it
is quite sensitive to noise and other artifacts like missing samples or outliers. In addition, it is not
always easy to extract the information contained in the series. In some cases, it is necessary to apply
some preprocessing techniques to make the information more accessible.

Outlier Detection: Outliers are data points that are significantly different from the other data points in
the series. They are usually caused by measurement errors or sensor malfunctions, but they can also
be caused by some unusual behavior in the system. It usually appears as high frequency components
in the series, as isolated samples.

Error Correction Methods: The problems in sensors or acquisition processes can cause errors in the
data. Some examples of these errors are duplicated or delayed samples. These errors may be difficult

33

Autopoietic Cognitive Edge-cloud Services

D3.1 – ACES Data and Knowledge Model Page 33 of 49 © 2023

to detect, but they can cause problems in the analysis of the series or biased results. Statistical
analysis or comparison between different sources of data can be used to detect these errors.

Data Normalization: it is a common technique used to scale the data to a fixed range. When
combining several time series into a multivariate time series, it is usually necessary to normalize the
data to a fixed range as the different series may contain information in different scales. For example,
the CPU usage is usually a percentage, while the number of requests per second of a service can be
an arbitrary high number.

Data Imputation: missing samples in a series can be caused by several factors, like network
congestion, services failures, server maintenance, etc. Data imputation is the process of filling the
gaps produced by missing samples. Interpolation or mean imputation (replace the missing values with
the mean value of the series) are some of the most common techniques, however, the analysis of the
series can be used to create more accurate estimations based, for example, in the trend or the
seasonality.

Feature Engineering: The date and time information contained in a time series can be used to extract
additional information. For example, the day of the week, the hour of the day, the month of the year,
etc. That kind of features are usually transformed to periodical signals, as they are cyclical in nature.
For example, the hour of the day can be represented as a signal that repeats every day, period 24.
This transformation helps to relate the samples belonging to the beginning of the cycle to the ones of
its end, e.g., samples collected at 23:00 and 00:30.

3.2.2 Dependency Analysis

Dependency analysis is a type of data analytics that aims to study the relationships between
variables, events, and observations collected from a system. Understanding the relationships among
this data makes it possible to discover and identify connections between components or processes in
the actual system being analyzed. These relationships or dependencies may be intentional and result
from the architecture or design of the system, but as systems grow in complexity, unforeseen internal
dependencies often emerge. Analyzing these dependencies is useful in various ways. The first utility
is diagnostic, meaning a reactive approach that helps understand the possible causes of an event or
the consequences that event has had on other components of the system. Taking this approach a
step further, dependency analyses can be conducted proactively, leading to fault prediction tools
that anticipate the effects of an event before it occurs, enabling preventive measures to avoid or at
least mitigate its impact.

Dependency analysis is a broad field that encompasses many different techniques and approaches.
In this section, some of the most common techniques are presented.

3.2.2.1 Root Cause Analysis

Root cause analysis (RCA) is a method used to identify the root causes of faults or problems. Some
event is considered a root cause if its presence or absence directly and specifically results in the
occurrence of the problem. RCA seeks to identify the point of origin of a problem studying the chain
of events that lead to the problem. RCA can be applied systematically following a methodology to
identify and address the fundamental causes of faults or problems. Within this methodology, a
specific event is deemed a root cause if its presence or absence directly and unequivocally leads to
the occurrence of the problem at hand. RCA goes beyond addressing surface-level issues by delving
into the intricate details of the chain of events that culminate in the manifestation of the problem. This
analytical approach aims to pinpoint the exact origin point of the problem, unravelling the underlying

34

Autopoietic Cognitive Edge-cloud Services

D3.1 – ACES Data and Knowledge Model Page 34 of 49 © 2023

factors and circumstances that contribute to its development. The steps involved in the RCA
methodology are as follows:

• Problem statement: define and describe the events, failures or situations that will be studied.
• Data collection: gather all data and events related to create a timeline or chronology.
• Estimate the impacts: estimate through historical correlations, differentiation, etc. the impact

or effects of the different events in the subsequent. This step should distinguish causal factors,
and non-causal factors.

• Causal graphing: Finally, using the sequences of events from previous step, a subsequence of
key events that explain the problem should be obtained and converted into a chain event graph.

3.2.2.2 Graphs and Event Representation

Among all the data structures or information formats used in this field, graphs stand out above the
rest. A graph is a data structure that models information to represent relationships between different
nodes. These relationships are directly mapped to dependencies, and the nodes can represent
variables, events, or the components themselves. This abstraction allows this, a priori generic,
structure to be used in this field to represent information, and even more importantly, enables the use
of graph-based algorithms for dependency analysis.

Graphs are an abstract data structure and can be employed in multiple ways to represent the same
information. For example, a system can be modeled by placing its components as nodes and
representing communication between components as edges between the nodes. Another option
could be to model the system as a state machine, with edges representing transitions and actions
taken in the system's components. Despite the mentioned flexibility to represent the same
information in different ways, there are some graph structures or types that are more commonly used
than others due to certain properties they possess. The most important ones are briefly described
below.

Directed Acyclic Graph (DAG): A DAG is a type of graph that consists of nodes connected by
directed edges, and it does not contain cycles. DAGs are commonly used to represent dependencies
and relationships in systems where certain actions must occur before others. DAGs can illustrate
relationships between components or tasks where one must precede another. In this context, nodes
represent components or tasks, and directed edges indicate dependencies. DAGs are valuable for
visually mapping out dependencies and ensuring that there are no circular relationships. In the
context of RCA, a DAG could illustrate the causal relationships among various factors contributing to
a problem, emphasizing the sequence and hierarchy of events leading to the identified root cause.

Event-Driven Graph: are utilized to model systems where actions or occurrences trigger subsequent
events. Nodes in this graph represent events, and directed edges signify the cause-and-effect
relationships between events. This type of graph is useful for understanding the chronological order
and dependencies of events within a system. The most common application of these graphs is the
Chain Event Graph, described later in this section.

Time-Based Graph: this type of graph focusses on capturing temporal relationships within a system.
Nodes represent events or states, and edges denote the temporal order between them, adding a new
dimension to the data structure. This temporal dimension is usually represented as a property in the
edges. This type of graph is beneficial for analyzing how the timing of events influences the
occurrence of problems.

35

Autopoietic Cognitive Edge-cloud Services

D3.1 – ACES Data and Knowledge Model Page 35 of 49 © 2023

3.2.2.3 Chain Event Graphs

Chain Event Graphs area graph graphical model for representing and analyzing causal relationships
within a system. These graphs are characterized by a sequential arrangement of events, forming a
linear chain that visually depicts the cause-and-effect dependencies among them. Each node in the
graph represents a specific event or state, while directed edges signify the chronological order in
which events unfold. These nodes in the chains may have several predecessor and descendants, but
in most cases the chains converge in a single one that contains the event of interest for the analysis.
In many cases, as this aggrupation of chains do not create cycles, they can be modelled as a DAG.

Chain Event Graphs are valuable tools for dependency analysis, allowing to identify critical
dependencies and understand the intricate relationships between events. By visually examining the
connections between events, decision-makers can gain insights into the impact of changes or
interventions on the overall sequence of events. This type of visualization is usually both a result and
a tool in the RCA processes.

3.2.2.4 Call Graph Analysis

Similar to the representation of events in graphs, interactions between different components can also
be modelled in a graph. These graphs are commonly known as call graphs, and they are used to
represent the interactions between the different components of a system. In this context, nodes
represent different components, services, or subsystems, while edges represent the interactions
between them. These interactions typically represent method invocations, data transmission, and
various forms of communication. In most cases, these graphs are time-based graphs, as this
modelling approach enables the representation of the chronological sequence of interactions
between the different components.

3.2.3 Network flow statistics processing

The ACES network switches will compute fine-grained, flow-based metrics, per packet, directly in the
data plane. As explained in Deliverable 2.1, when deployed in an EMDC edge at Terabit traffic speeds,
conventional server-based solutions can only monitor a small subset of traffic for its downstream
applications, as they are limited to a few Gbps packet processing at best. Network traffic needs thus
to be (heavily) sampled to meet the capabilities of the monitoring server. Observing and computing
in-network statistics over all network traffic (see the details on network metrics in Table 7) in the
network switch data plane makes the ACES monitor records richer than the sampling-based records
generated by traditional systems, enabling new and improved network monitoring applications.

We can divide the process of moving from network traffic data to knowledge into three parts: packet
processing, statistics computation, and statistics analysis. Packet processing is the task at which a
packet switch excels. An incoming packet is parsed according to the specific network protocol (e.g.,
extract the IP destination header). The parser extracts fields from the packet headers, making them
available for subsequent processing. Next, the extracted packet header fields are used as keys for
the switch lookup tables (e.g., the forwarding table). Finally, once the appropriate entry is identified in
the tables, the switch performs an action (e.g., forwarding the packet to a specific port).

In ACES, we will develop specialized actions to extract telemetry data. We can consider these data
along two axes:

Flow type. The ACES network switch monitor will compute metrics for multiple flow keys. Currently,
we are considering four types of keys: [MAC src, IP src], [IP src], [IP src, IP dst], and [5-tuple].

36

Autopoietic Cognitive Edge-cloud Services

D3.1 – ACES Data and Knowledge Model Page 36 of 49 © 2023

Flow atoms. The ACES switch stores telemetry data as “flow atoms”. These are specialized counters
for a specific flow key. Currently, we consider three flow atoms: number of packets, number of bytes,
and squared number of bytes.

These atoms are maintained in the switches’ stateful memory and are used to compute statistics, the
second step in moving from network data to knowledge. For generality, the ACES switch will compute
a diverse set of statistics of two types: unidirectional (1D), tracking outbound traffic, and bidirectional
(2D), considering both inbound and outbound traffic. The 1D flow statistics include weight, mean,
standard deviation, and time intervals. The 2D statistics include magnitude, radius, approximate
covariance, and correlation coefficient.

An important observation is that computing these statistics can be performed in a streaming fashion,
per-packet – much aligned with the computational model of a switch pipeline. Indeed, the pipeline
stages of a switch allow for performing basic arithmetic and logical operations per packet, storing the
results in stateful memory when needed. In ACES, we instrument the switch pipeline to compute the
statistical features of network flows. However, to maintain Terabit throughputs, the computational
model of a switch is limited, and many calculations resort to approximations. There is, therefore, a
trade-off between the ability to compute statistics over all packets and the potential loss of precision
of approximated estimates.

The final step for knowledge creation is statistics analysis. In ACES, we will employ AI/ML techniques
to extract knowledge from the flow statistics. For example, the anomaly-based intrusion detection
systems developed in ACES will use network flow statistics computed in the switch as input features
to an ML processing pipeline. We will investigate autoencoders, specifically, as these models can be
trained to mimic (reconstruct) network traffic patterns [10]. The discrepancy between this input and
the reconstructed output can serve as a measure of anomaly.

3.2.4 Feature extraction and modelling techniques for
security and privacy

As presented in D2.1, ACES offers a comprehensive security solution to safeguard its services and
data from potential cyberattacks. This solution involves various techniques to extract features, model
system behaviours, and detect cyberattacks, as summarized below.

3.2.4.1 Anomaly detection in EMDCs

For container and node security, multiple metrics discussed in Section 2.3 - such as system calls,
CPU, GPU, memory, storage, and network metrics - can be used to profile the normal behavior of the
system and detect anomalies that may be caused by cyberattacks. These metrics can be collected
and processed as time series data, with time series analysis typically applied for anomaly detection or
clustering (cf., Section 3.2.1.1). Beyond time series or statistical analysis, advanced ML models like
Decision Trees [11], K-NN, Random Forest, and AutoEncoders [12][13] are utilized for dynamic
anomaly detection. These ML-based techniques learn and compare the patterns of system calls
triggered and the CPU, memory, and network usage generated by benign and malicious workloads.
For instance, time series data of system calls can be transformed into bags and sequences of system
calls before using supervised anomaly detection methods to identify potential attacks [14].

37

Autopoietic Cognitive Edge-cloud Services

D3.1 – ACES Data and Knowledge Model Page 37 of 49 © 2023

3.2.4.2. Security for ML

The ACES agents will be supported by several types of ML models based on the training data sources
we have described in this document. For ML security, there are various techniques to analyze ML
model parameters (weights and biases) to detect poisoned models. Most techniques convert the
tensors of model parameters into vectors and process them as time series data. For example,
Fereidooni et al. transform model parameter vectors into the frequency domain and use frequency
analysis techniques to identify poisoned models [16]. Additionally, several techniques to discern
differences between poisoned and benign models include Euclidean and cosine distance measures
[15], data distribution analysis [17], and frequency domain analysis. Typical ML algorithms used for
clustering and detecting poisoned models are, for instance, K-Means [18] and HDBSCAN [15][17].

38

Autopoietic Cognitive Edge-cloud Services

D3.1 – ACES Data and Knowledge Model Page 38 of 49 © 2023

4. ACES Knowledge Model
This section presents the knowledge model defined in ACES to characterize all the context
information relevant for the ACES agents to reach decisions on what actions should be started by the
system. The section provides both the description of the main parts of the knowledge model, as well
as the relationship of this model with the agents that will make use of the information.

4.1 Knowledge Model description

The model aims to capture a comprehensive set of information that will be instrumental as features in
these machine learning models, enhancing the decision-making and predictive capabilities of the
ACES agents.

Knowledge will be structured within a knowledge graph, allowing for complex relationships and
dependencies to be represented and queried efficiently. To facilitate interoperability and extensibility,
our abstractions will adhere to the NGSI-LD standard. This alignment not only facilitates the
integration of ACES elements with other European Data Spaces but also enhances the scalability and
adaptability of our approach.

These abstractions are being defined based on the following data sources that have been discussed
in the previous sections.

The information model is built on the foundation of the ACES context and requirements, which have
been meticulously documented in Work Package 2 (WP2), with specific emphasis on Deliverable 2.1
concerning the ACES architecture. This architecture defines the overarching structure and guiding
principles for the creation of management agents capable of overseeing complex edge computing
environments.

We incorporate insights taken from industry-leading datasets as the ones discussed in Section 3.1.4.
These datasets show real configurations and scenarios, as well as highlight key characteristics from
these environments that must be captured for an effective management of ACES environments.

Our model also takes into account metadata derived from prevalent microservice configurations and
complex deployments, including those found in widely used Docker and Helm repositories. This data
is critical for understanding the types of dependencies, relationships, and constraints that the ACES
agents must manage. Such insights are imperative for the autopoietic functions of the agents,
enabling them to adapt and evolve within their operational ecosystem.

The model also integrates runtime information from the supply-side, such as the runtime state of
services, and the information captured by monitoring metrics, as detailed in Section 2. These metrics
provide real-time insights into the performance and state of the micro data centre and the running
services, which will provide a substantial percentage of the features that ACES agents employ for
reasoning.

4.1.1 Modelling Challenges

The ACES platform targets applications adapted to the specific capabilities of the edge-cloud
continuum and proposes an innovative hardware platform to run its functionality (the EMDC). We
briefly discuss some of the unique characteristics that we have considered.

39

Autopoietic Cognitive Edge-cloud Services

D3.1 – ACES Data and Knowledge Model Page 39 of 49 © 2023

4.1.1.1 EMDC Resource Pool

Additionally to the nodes in an EMDC, we consider a pool of resources that presents an innovation to
the current definitions of the edge continuum. This means that besides the processing capabilities in
a node (that is a constitution of multiple resources), single resources can be requested for pod
processing. This pool of resources is part of the EMDC and can be consulted by the edge(-cloud)
management as requested. Such a pool mainly prevents resource limits, increased latencies, and
stability of the performance of other pods, as their assigned resources are not tapped. Currently, the
Compute Express Link (CXL)30 is being implemented in CPUs (Intel, AMD), in memory and storage
(Samsung) and the PCIe switches are expected in 2025. Besides the hardware development, the
biggest challenge currently is related to orchestration and how the network infrastructure can be
incorporated into these pools of resources.

4.1.1.2 Application Types

For the different services, we can identify three application types that come with diverse
requirements in their response time.

• The long-running applications (LRAs) instantiate long-standing pods to enable iterative
computations in memory or unceasing request-response. LRAs include processing
frameworks (e.g., Apache Spark31, Flink32), latency-sensitive database applications (e.g.,
HBase33 and MongoDB34), and data-intensive in-memory computing frameworks (e.g.,
TensorFlow35).

• Batch processing is typically used when you have a large amount of data that needs to be
processed all at once, and when the results of that processing can be stored and used later.
Data is typically processed on a schedule or at regular intervals. There are two types of batch
processing: Regular returning requests, and opportunistic requests with little to no SLA
(Service Level Agreement).

• Stream processing also deals with large volumes of data, but the data needs to be processed
in real-time (e.g. Apache Storm36, Kafka streams37).

Future workloads will become even more complex with LRAs, batches, and stream processes being
interconnected. Therefore, it will be challenging to categorize an application and tune its agents
accordingly.

4.1.1.3 Relationships among Pods

Applications will be deployed in the runtime platform as pods. These pods can have several relations
with each other. There can be different needs, e.g., that they need to be processed in parallel or that
they depend on each other. Additionally, if one pod is too slow, the current system creates more pods
to reach the given response times of the specific services. Currently, these relationships are not used

30 https://www.computeexpresslink.org/
31 https://spark.apache.org/
32 https://flink.apache.org/
33 https://hbase.apache.org/
34 https://www.mongodb.com/
35 https://www.tensorflow.org/
36 https://storm.apache.org/
37 https://kafka.apache.org

40

Autopoietic Cognitive Edge-cloud Services

D3.1 – ACES Data and Knowledge Model Page 40 of 49 © 2023

in the scheduler and orchestration optimization. For example, placing interacting services closer
together can significantly enhance their performance) if there are multiple services with
microservices that frequently interact, it is advisable to locate the microservices of one service within
the same region to improve performance. For pods that are heavily dependent on a database, it is
best to place them near the database to reduce latency and improve overall performance.

4.1.2 Base concepts

Our knowledge model is built on top of the NGSI-LD framework, utilizing its foundational
abstractions—Entity, Relationship, Property, and Value—to construct a comprehensive knowledge
graph that encapsulates the multifaceted nature of service orchestration and infrastructure
management.

The knowledge graph is also captured using the JSON-LD format, ensuring a standardized and
interoperable representation of information.

Entities within our model serve as the primary abstraction, characterizing the different aspects of
supply and demand. They encapsulate detailed descriptions of the runtime services executing at the
ACES platform, including the logical definition of their constituent components such as pods, replicas,
and the various other elements that necessitate accommodation within the infrastructure.

Parallel to the service descriptions, our model delineates the supply aspect, providing a structured
description of the environment. This encompasses the EMDC, detailing the available hardware
resources—CPU, memory, storage, and networking components. Both aggregated and disaggregated
resources are represented, reflecting the actual state of the infrastructure. The runtime orchestration
platform, Kubernetes, is depicted through entities that describe the managing nodes and the
deployed pods.

Monitoring information forms the third pillar of our model, encompassing metrics that are intimately
related to the supply elements. These metrics capture the performance and utilization of hardware
and software resources, providing insights into the infrastructure's operational status. Events that
record the interactions and invocations of the runtime-deployed microservices enrich the model,
offering a dynamic perspective of system behavior and service consumption.

These three models are directly related. The services described in the supply model will be linked to
their real instantiations in nodes from the demand model, with individual instances of the execution
services being linkable to all their requirements and predefined constraints. Finally, the runtime model
will complete information about every element of the supply model, providing historical and up to
date views of their state.

4.1.3 Supply model

The provided diagram shows the key entities of the supply model and their interrelationships, which
capture the ACES services runtime execution platform.

41

Autopoietic Cognitive Edge-cloud Services

D3.1 – ACES Data and Knowledge Model Page 41 of 49 © 2023

Figure 2 ACES sample supply model

The top-most level element is the EMDC (Enterprise Micro Data Centers), which serves as the
hosting ground for the Kubernetes clusters. The EMDC represents the hardware platform that
contains multiple entities representing the hardware that will be used to deploy and run services. As
the ACES architecture described In D2.1 describes, there can be multiple EMDCs that form the ACES
execution infrastructure. Key properties of an EMDC might include:

• id: A unique identifier, such as "emdc001".
• location: The geographical or network location, for instance, "DataCenterNorth".

The EMDC hosts multiple K8_cluster entities, each representing a Kubernetes cluster. The hosts
relationship makes these explicit in the model. A Kubernetes cluster manages a set of node machines
for running containerized applications. Potential properties for a K8_cluster include:

• clusterId: A unique identifier, like "cluster-01".
• nodeCount: The number of nodes in the cluster, e.g. "15".

A node is a worker machine in Kubernetes that can run Pods for ACES services. It contains the
services necessary to run Pods and is managed by the master components. Examples of node
properties are:

• nodeId: The unique identifier, such as "node-1234".
• status: Current status, e.g. "Available" or "Unavailable".

ACES services, deployed as pods will require access and consumption of multiple types of resources:
cpu, gpu, memory, and storage. Each type of resources is modelled as a separate entity. Unlike
traditional hardware architectures, the ACES EMDC will provide a mesh of disaggregated resources,
which is represented in our modeled with the contains type of relationship being defined not only
from a node to one of these entities, as it would happen in a classical system, but also by the
possibility of these links occuring directly from e.g a gpu to the EMDC. Each of these entities will have
its set of unique potential properties, although we provide some examples among them:

• cores: The number of cores available, e.g., "8 cores" for CPU.
• model: The model of the processor, such as "Intel Xeon E5-2670" for CPU or "NVIDIA

Tesla V100" for GPU.

42

Autopoietic Cognitive Edge-cloud Services

D3.1 – ACES Data and Knowledge Model Page 42 of 49 © 2023

These entities represent every aspect of the demand, including their topology, and current state. This
model is completed with the key entity that maps between supply and demand, the pod (we use the
Kubernetes term in this case, as pods are the smallest deployable units of computing that can be
created and managed in Kubernetes). Each pod runs a single instance of a given service. A pod runs
on a k8_cluster, as shown with the deployed_at type of link. For a pod, relevant properties include:

• podId: A unique identifier inside the cluster, such as "pod-5678".
• ServiceId: a reference to the service definition in the supply model where the full

information about the service can be extracted.

Consumes is key to capture the resource usage for each pod on the. This edge is annotated with
properties that qualify the amount of that resource currently being allocated to that node, for
instance, {"cpu": "250m", "memory": "512Mi"}.

This structured supply model provides a clear and comprehensive view of the available resources and
their utilization, which is essential for maintaining the desired performance and efficiency of the ACES
platform's services.

4.1.4 Demand model

Kubernetes applications are structured as services containing pods, with explicit dependencies. Helm
charts build upon these elements and provide a higher level services view, focusing on aspects like
dependencies and compositions. The ACES demand model needs to support multiple types of
applications that will be deployed under this model: Long-Running Applications (LRAs), batch
processing applications, and stream processing applications. Each type presents unique aspects in
terms of operation: some are designed to execute a task and then terminate, while others are
intended for continuous operation. These applications are also defined by their performance
objectives, such as completion times and deadlines for batch processes, or service times and
application latency for continuous operations.

In defining the requirements for these applications, we consider additional goals and constraints that
are specific to the services and charts. These requirements form the basis of the demand model
(Figure 3). This approach ensures that each application's needs are accurately captured and
addressed in the Kubernetes environment.

The demand model is crafted to encapsulate the objectives and constraints integral to the ACES
platform's functionality, performance, and operational correctness. These goals serve as inputs for
reasoning agents, ensuring the platform's autopoietic behavior aligns seamlessly with the intended
outcomes.

The core entity of the demand is the service. This entity represents a discrete unit of functionality—
be it a microservice, Function-as-a-Service (FaaS), or Database-as-a-Service (DBaaS). It is important
to distinguish between this general notion of a service and a Kubernetes service, which, although
similar, entails additional specificities related to deployment and networking. Potential properties for a
service entity might include:

• id: A unique identifier for the service, such as "energy auction service".
• version: The current version of the service, for example, "1.4.3".
• provider: The entity providing the service, e.g "IPTO".

43

Autopoietic Cognitive Edge-cloud Services

D3.1 – ACES Data and Knowledge Model Page 43 of 49 © 2023

Figure 3 ACES Sample demand model

Services are not standalone; they frequently amalgamate into higher-level constructs for more
complex functionality. We refer to these assemblies as charts, resonating with the Helm terminology,
the prevalent tool for defining and deploying such groupings. A chart encapsulates a collection of
services, managing their deployment as a coherent unit. Relationships between charts, often
encapsulating composition and dependencies, are represented as edges in our model, with the type
depends. Chart entity properties may include:

• id: A unique identifier for the chart, such as "".
• version: The release version of the chart, for instance, "2.4.0".
• provider: The entity providing the whole chart, will be the same of its services.

Services within the supply model are constrained by definitive requirements. These articulate the
resource commitments necessary for a service's operation, whether through complete dedication or
reserved capacities. Properties for a requirement entity could encompass:

• resourceType: The kind of resource required, like "CPU" or "Memory".
• quantity: The amount of the resource needed, for example, "2048MiB" for memory.
• reservation: A boolean indicating whether the resource is exclusively reserved, e.g.true.

Lastly, the model integrates SLO (Service Level Objectives) entities, which express the behavioral
goals of services during execution. These SLOs detail the non-functional aspects, such as
performance thresholds or reliability targets, that the services are expected to uphold. Properties for
an SLO entity might include:

• metric: The performance metric it pertains to, such as "latency".
• target: The desired threshold for the metric, possibly "100ms".
• reliability: A measure of uptime or error rate, for example, "99.9%".

Together, these entities and their interconnections construct a demand model that guides the
reasoning agents in orchestrating a dynamic, responsive, and efficient system operation.

44

Autopoietic Cognitive Edge-cloud Services

D3.1 – ACES Data and Knowledge Model Page 44 of 49 © 2023

4.1.5 Runtime model

The runtime model links the supply model elements that characterize the ACES platform resources,
with the demand model describing the functionality that needs to be deployed. In order to ensure that
everything works according to the set requirements, it is necessary for the knowledge model to be
able to capture at each point in time what is the exact state for every supply model. This way, ACES
reasoning agents will have the ability to explore the past and present of the environment and take
informed decisions.

Figure 4 ACES sample runtime model

The runtime model is composed of two entities: metrics and events. Metrics are time series that are
associated to a single element of the supply model. Metrics have a name, and each of them a
timestamp of the obtained measurement time. This way, the whole set of metrics constitutes a time
series.

Events are timed occurrences of interactions on the runtime elements, in particular the deployed
pods that instantiate demand services. Events also have a timestamp, and they might originate from
another element of the runtime model (e.g. from another pod, constituting a service call), or from
some external element such as a client. These are individual entries, but agents can process them
into more aggregate metrics to aid in the decisions, such as workload aggregated statistics.

45

Autopoietic Cognitive Edge-cloud Services

D3.1 – ACES Data and Knowledge Model Page 45 of 49 © 2023

4.2 ACES agent types

The knowledge base of ACES will be used by reasoning entities that we refer to as agents. In this
subsection we provide a short overview of the main characteristics of a system for decision making
based on agents using the Agent-Based Modelling (ABM) approach. The information presented here
is complemented with Section 4 of D4.2, where we present specific agents and algorithms to handle
workload management problems in ACES.

In ABM, a swarm consists of swarm members that can be modelled as agents. They follow local rules,
interact with the environment, communicate with other agents, and react on local information [20].

Wilensky and Rand [19] give the following guidelines when to use ABM:

• Medium number of agents: several dozen up to about 100000 agents. In our use case, we
model up to several thousand agents, typically pods and resources.

• Heterogeneity: in ABM, agents can be as heterogeneous as necessary. Thus, in ABM, we can
model different pods and resource types as agents.

• Local and complex interactions: as used in swarm intelligence can be depicted in ABM.
• Rich environments with agent-like local rules: This can be used to, e.g., model complex

node queue manipulations in our case.
• Time: ABM is a model of process that fits to our job-shop scheduling problem.
• Adaptation: almost no other method can model adaptivity of individual entities well. In ABM,

agents' actions and decisions depend on past actions and current information, i.e., agents can
learn. This fits the swarm model very well.

When shaping the edge continuum to an agent-based system, we analyze a group of possible swarm
agents and their attributes. In this context, we need to determine the eligibility of an entity to serve as
a member of the EMDC swarm [21]. The swarm can exhibit homogeneity (with all agents being of the
same kind, like numerous pods) or heterogeneity (comprising agents of various types, such as pods
and resources). For an entity to qualify as a swarm member, it should possess the capacity to
effectively function within a swarm. This entails the presence of a significant number of other swarm
members (for instance, a single instance of an FPGA, existing in isolation, would not make a suitable
swarm member). Additionally, the entity should exhibit an appropriate degree of abstraction to
facilitate modelling, possess the capability to sense dynamic information from the immediate
environment, respond to information originating from the local vicinity (such as making decisions),
and be logically coherent and comprehensible, fostering trust in the proposed solution [20].

Our agent-based approach introduces two distinct types of swarm agents: demand swarm agents
and supply swarm agents. These agents collaborate within an EMDC environment, orchestrating
processes such as pod placement, storage management, and caching optimization. The model for the
problem consists of an edge continuum with resources, queues, pods, and processes (following
subsections are adapted inputs from Schranz et al. [22]).

4.2.1 Demand Swarm Agents
An application is split to a set of services S, that are represented as a set of related pods 𝑃! =
{𝑝",  𝑝#,   … } with s as the specific service. Each service s is defined by a compilation of resources 𝑅!
which prescribes the processing steps necessary to compute the individual pods. The pod 𝑝$! can
choose which of the suitable nodes 𝑁%& to use for each necessary process step 𝑃'.

46

Autopoietic Cognitive Edge-cloud Services

D3.1 – ACES Data and Knowledge Model Page 46 of 49 © 2023

4.2.2 Supply Swarm Agents
The EMDC E contains several sets of nodes or nodes, consisting of different types of resources 𝑁' =
{𝑁"' ,  𝑁#' ,   …  }, where r is/are the resource type(s). A node with different resources presents a typical
EMDC node, whereas a node with a single resource presents, e.g., a CPU that is part of a pool of
resources. In the course of this project, we consider multiple types of resources along with their
respective capacities: CPU, FPGA, RAM, and NVMe. Each resource 𝑁%' has a queue 𝑄%'.

4.2.3 Orchestration of Swarm Agents with ML

One key element of the overarching ACES architecture revolves around the orchestration of these
demand/supply agents. This orchestration process will be executed through swarm algorithms.

Each individual swarm agent will adhere to specific policies and conform to a general behavior
pattern established by the chosen swarm algorithm. However, it is worth noting that every swarm
algorithm relies on hyperparameters that fine-tune various aspects of the resulting coalition's
behavior [23]. More specifically: 1) hormone algorithms are contingent on hyperparameters that
govern i) the quantity of generated hormones, ii) the rate of hormone evaporation, iii) the mobility of
hormones, and iv) the intensity of hormone attraction; similarly, 2) ant algorithms involve
hyperparameters related to i) the influence of hormones, ii) the rate of updates, and iii) the
evaporation rate. Hyperparameters are typically chosen using trial-and-error methods, random/grid
searches, and/or heuristics [24]. Once these values are established, it is uncommon to modify them
during the execution of the swarm algorithm.

In a novel approach, ACES selects hyperparameters using autonomous ML techniques which also
allows for potential real-time updates, enabling the coalition's behavior to adapt to significant
environmental changes. More specifically, Bayesian learning [25] and Reinforcement Learning [26]
tools will be employed and tested for this purpose. These two are experiment-driven approaches that
efficiently explore the hyperparameter space by monitoring the system's KPIs. They offer efficiency
as i) they are automated and ii) yield satisfactory results with a limited number of iterations [27].
Additionally, once a suitable set of hyperparameters is identified, these ML tools can swiftly self-
adapt to environmental changes by tracking KPIs and using previous hyperparameter values as a
warm-up starting point.

Moreover, each individual agent will be required to conduct basic forecasting operations using
regularized linear regression, applied to the monitored metrics. To enable autopoietic behavior, the
regularization hyperparameter will be self-adjusted using a novel bilevel optimization approach. When
feasible, and subject to hardware constraints, an innovative Neural Network architecture named
'split-boost' [28] will also be employed for the same purpose of having autonomous tuning of
hyperparameters.

47

Autopoietic Cognitive Edge-cloud Services

D3.1 – ACES Data and Knowledge Model Page 47 of 49 © 2023

5. Conclusion
This document has presented the foundations of the ACES Knowledge Model, which constitutes the
backbone for realizing the autopoietic capabilities of the ACES platform. The pursuit of an autopoietic
system, capable of self-management and continuous adaptation, requires the agent components
developed in WP4 to be aware of every relevant characteristic of the static and runtime state of the
ACES platform, in order to adequately decide on the required course of action. The model's design is
a response to the increasing need for sophisticated orchestration of services in dynamic edge-cloud
environments, which are characterized by their heterogeneous and decentralized nature.

In the transition "From Data to Knowledge," this deliverable has articulated the transformative
process through which raw data is elevated to actionable intelligence within the ACES platform. It
presents the blueprint for the architecture that will be involved directly in data collection and
telemetry, to be complemented through processing and analytics, to knowledge formation and
operational wisdom. This process is facilitated by leveraging advanced data aggregation techniques,
robust analytics, and machine learning algorithms that convert the vast streams of telemetry and
metrics into a coherent understanding of the system's state and performance.

The Knowledge Model is built upon the NGSI-LD framework. Through the JSON-LD format, we have
ensured that the information model is not only standardized but also interoperable across different
systems and platforms. The model effectively captures the core aspects of supply and demand within
the ACES infrastructure. On the supply side, it details the computational resources, such as CPUs,
GPUs, and memory, as well as the network components that constitute the EMDCs. For the demand
side, it encapsulates the service requirements, operational SLOs, and deployment strategies, which
are crucial for service fulfilment and performance optimization.

The ACES Knowledge Model is complemented with the core agent concepts that underpin its
autopoietic behavior. The deliverable has introduced distinct swarm agents—both demand and
supply—that operate within a dynamic EMDC environment. These agents will be pivotal to deciding
and orchestrating complex actions like pod placement, network optimization, and load balance,
whose work will be developed in WP4.

Throughout the document, we have explored the relationships between entities, such as the
deployment of services on Kubernetes clusters and the utilization of computational resources by
pods. These relationships are integral to the model, as they reflect the real-time state and topology of
the system and enable the reasoning agents to perform effective orchestration and management
tasks.

In conclusion, the work reported in this deliverable represents a significant step towards realizing a
self-sustaining system that is equipped to handle the complexities of modern edge-cloud services.
The model is expected to evolve as the platform expands and as new challenges and requirements
emerge. Future work in WP 3 will build upon this milestone. T3.1 will focus on refining the model,
integrating it with the AI/ML agents to realize the vision of the ACES ecosystem. On the other hand
T3.2 will develop the full telemetry infrastructure, managing the captured knowledge,

48

Autopoietic Cognitive Edge-cloud Services

D3.1 – ACES Data and Knowledge Model Page 48 of 49 © 2023

References

[1] Maturana, H.R., & Varela, F.J. (1980). Autopoiesis and Cognition: The Realization of the Living. D.

Reidel Publishing Company.
[2] Briscoe, G., & Dini, P. (2010). Towards autopoietic computing. In Digital Ecosystems: Third

International Conference, OPAALS 2010, Revised Selected Papers 3, 199-212.
[3] Corcho, O., Gomez-Perez, A. (2002), A Roadmap to Ontology Specification Languages, 12th

International Conference on Knowledge Engineering and Knowledge Management
[4] Lexicon Model for Ontologies: Community Report, 10 May 2016,

https://www.w3.org/2016/05/ontolex/
[5] Cooper, L.P., The Power of a Question: A Case Study of Two Organizational Knowledge Capture

Systems, 36th Hawaii International Conference on System Sciences (HICSS’03)
[6] Haidrar, S., Bencharqui, H., Anwar, A., Bruel, J. M., & Roudies, O. (2017). REQDL: A requirements

description language to support requirements traces generation. In 2017 IEEE 25th International
Requirements Engineering Conference Workshops (REW) (pp. 26-35). IEEE.

[7] Hargadon, A.B. (1998), Firms as Knowledge Brokers: Lessons in Pursuing Continuous Innovation,
California Management Review

[8] Correa da Silva, F.S. Vasconcelos, W.W., Robertson, D.S. Brilhante, V. de Melo, A.C.V. Finger, M.
Agusti, J. (2002), On the insufficiency of ontologies: problems in knowledge sharing and
alternative solutions, Knowledge-Based Systems, 15 (3), Pages 147-167

[9] Bencharqui, B. Haidrar. S. Anwar, A. (2022) Ontology-based Requirements Specification Process,
E3S Web of Conferences, ICIES’22, 351, 01045 https://doi.org/10.1051/e3sconf/202235101045

[10] Mirsky, Y. et al., Kitsune: An Ensemble of Autoencoders for Online Network Intrusion Detection,
NDSS’18

[11] D. Huang, D. Cui,H. Wen, and S. Huang, C. (2019). “Security analysis and threats detection
techniques on docker container,” in 2019 IEEE 5th International Conference on Computer and
Communications (ICCC).

[12] Lin, Y. Tunde-Onadele, O. Gu, X. He, J. and Latapie, H. (2022). “Shil: Self-supervised hybrid
learning for security attack detection in containerized applications,” in 2022 IEEE International
Conference on Autonomic Computing and Self-Organizing Systems (ACSOS).

[13] Lin, Y. Tunde-Onadele, O. and Gu, X.(2020). “Cdl: Classified distributed learning for detecting
security attacks in containerized applications,” in Annual Computer Security Applications
Conference, ACSAC ’20.

[14] Flora, J. Goncalves, P., and Antunes N.(2020), “Using attack injection to evaluate intrusion
detection effectiveness in container-based systems,” in 2020 IEEE 25th Pacific Rim International
Symposium on Dependable Computing (PRDC).

[15] Nguyen, T., Rieger, P., et al., (2022). FLAME: Taming Backdoors in Federated Learning, In:
Proceedings of the 31st USENIX Security Symposium, pp. 1415-1432, USENIX Association, 31st
USENIX Security Symposium (USENIX Security 22), Boston, USA, 10.-12.08.2022.

[16] Fereidooni, H. Pegoraro, A., et al. (2024), FreqFed: A Frequency Analysis-Based Approach for
Mitigating Poisoning Attacks in Federated Learning, In: Network and Distributed System Security
(NDSS) Symposium 2024.

[17] Kumari, K., Rieger P., et al., (2023). BayBFed: Bayesian Backdoor Defense for Federated Learning,
In: 44th IEEE Symposium on Security and Privacy (S&P).

[18] Shen, S., Tople, S., and Saxena P., (2016). Auror: Defending Against Poisoning Attacks in
Collaborative Deep Learning Systems. In ACSAC.

[19] Wilensky, U., & Rand, W. (2015). An introduction to agent-based modeling: modeling natural,
social, and engineered complex systems with NetLogo. Mit Press.

https://tubiblio.ulb.tu-darmstadt.de/cgi/search/archive/advanced?dataset=archive&screen=Search&title%2Ftitlealternative_name_merge=ALL&title%2Ftitlealternative_name=&creators_name%2Feditors_name_merge=ALL&creators_name%2Feditors_name=&creators_id=1677&creators_id_match=EX&editors_id=&editors_id_match=EX&abstract%2Fabstractalternative_name_merge=ALL&abstract%2Fabstractalternative_name=&date=&keywords%2Fkeywordsalternative_name%2Fkeywordsswd_merge=ALL&keywords%2Fkeywordsalternative_name%2Fkeywordsswd=&divisions_merge=ANY&refereed=EITHER&book_title%2Fevent_title%2Fpublication%2Fseries%2Fvolume_merge=ALL&book_title%2Fevent_title%2Fpublication%2Fseries%2Fvolume=¬e_merge=ALL¬e=&isbn=&isbn_match=EX&satisfyall=ALL&order=-date%2Fcreators_name%2Ftitle&_action_search=Suchen
https://tubiblio.ulb.tu-darmstadt.de/view/person/Rieger=3APhillip=3A=3A.date.html
https://tubiblio.ulb.tu-darmstadt.de/133179/

49

Autopoietic Cognitive Edge-cloud Services

D3.1 – ACES Data and Knowledge Model Page 49 of 49 © 2023

[20] Umlauft, M., Schranz, M., & Elmenreich, W. (2023). Simulation of Swarm Intelligence for Flexible
Job-Shop Scheduling with SwarmFabSim: Case Studies with Artificial Hormones and an Ant
Algorithm. Springer Book Chapter (LNNS).

[21] Schranz, M., Umlauft, M., & Elmenreich, W. (2021). Bottom-up Job Shop Scheduling with Swarm
Intelligence in Large Production Plants. In SIMULTECH (pp. 327-334).

[22] Schranz, M., Harshina, K., Forgacs, P., & Buining, F. (2024). Agent-based Modeling in the Edge
Continuum using Swarm Intelligence. In ICAART (under review).

[23] Gad, A. (2022). Particle swarm optimization algorithm and its applications: a systematic review.
Archives of computational methods in engineering, 29.5.

[24] Ali, Y. A., Awwad, E. M., Al-Razgan, M., & Maarouf, A. (2023). Hyperparameter search for machine
learning algorithms for optimizing the computational complexity. Processes, 11(2), 349.

[25] Bemporad, A. (2020). Global optimization via inverse distance weighting and radial basis
functions. Computational Optimization and Applications, 77(2), 571-595.

[26] Sutton, R. S., & Barto, A. G. (1999). Reinforcement learning: An introduction. Robotica, 17(2), 229-
235.

[27] Cannelli, L., Zhu, M., Farina, F., Bemporad, A., & Piga, D. (2023). Multi-agent active learning for
distributed black-box optimization. IEEE Control Systems Letters.

[28] Cestari, R. G., Maroni, G., Cannelli, L., Piga, D., & Formentin, S. (2023). Split-Boost Neural
Networks. arXiv preprint arXiv:2309.03167.

