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Executive Summary 
Deliverable D3.1 – ACES Knowledge and Data Model of the ACES project presents the outcome from 
WP3 in identifying the information that will be required by the ACES platform to perform its 
management functions and capture it into a knowledge model that can be rich and usable by multiple 
reasoning agents. The approach described in this document aims to bridge existing gaps by offering 
a robust and adaptable framework to facilitate autopoietic system operations.  
 
The ACES platform presents several unique characteristics in the edge-cloud continuum; the 
hardware execution infrastructure will be a collection of EMDCs (Edge Micro Data Centre), that offer 
disaggregated hardware resources for execution. Applications will run over a distributed Kubernetes 
infrastructure. The document describes the architecture for data collection within the ACES 
ecosystem, discussing the metrics pipeline architecture, tools for telemetry and collection, and 
providing specific details of the metrics and data that can be extracted from the platform. 
 
Taking as reference these identified raw information sources the document evaluates research 
proposals, standards, and industry specifications to capture that data into an actionable model. In 
addition to that, the techniques for data cleaning, knowledge inference and creation from the base 
data is also presented. This includes time series analysis techniques for metrics processing, 
dependency and correlation analysis from multiple sources, and specific processing techniques to 
capture features relevant to the non-functional aspects of the system. 
 
The central part of the deliverable describes the ACES Knowledge Model. The section discuses 
inherent challenges to the ACES platform for knowledge modelling, and presents a base model 
composed of three main elements: the supply (services execution platform), the demand 
(microservice and FaaS based applications), and the runtime (real time and historical status of the 
supply elements). To complement that information the deliverable also outlines the ACES agents that 
will consume this information, identifying their based types and their roles in the system. 
 
The deliverable wraps up by discussing the main conclusions and outlines the next steps in WP3 
regarding the perception of ACES agents towards the managed environment. 
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Disclaimer 
 
 
This document contains material, which is the copyright of certain ACES contractors, and may not be 
reproduced or copied without permission. All ACES consortium partners have agreed to the full 
publication of this document if not declared “Confidential”. The commercial use of any information 
contained in this document may require a licence from the proprietor of that information. The 
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information., according to the provisions of the Grant Agreement and the Consortium Agreement 
version 3 – 29 November 2022. The information, documentation and figures available in this deliverable 
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1. Introduction 
 

1.1 Background 
 
The dynamic nature of edge computing environments, characterized by low latency requirements, 
resource limitations, and demand volatility, presents distinct challenges. Existing models often lack 
the flexibility to efficiently capture these challenges and implement solutions that can reason in an 
effective way that improves overall system behavior. In response, the ACES data and knowledge 
model is designed to bridge these gaps by offering a robust and adaptable framework to facilitate 
autopoietic system operations. 
 
The ACES project draws inspiration from the concept of autopoiesis [1], which refers to a system's 
ability to maintain and renew itself autonomously. The project's ambition lies in creating a self-
managing architecture that proactively responds to external and internal variations and evolving 
service requirements [1]. Central to this ambition is a knowledge model that effectively captures the 
diverse types of data that are generated in the ACES platform, and can integrate them into a 
complex, interconnected model that contains all the relevant features for ACES agents and Machine 
Learning components to perform its function and achieve autopoietic behavior to the platform. 
  
This deliverable reports the work primarily undertaken in WP3 - Data Acquisition, Knowledge 
Generation and Organization of the ACES project, in particular the effort from tasks T3.1 – From Data 
to Knowledge and T3.2 – Perceiving the Environment over the first year of the project. The 
information is further complemented with the overall definition of the ACES architecture, as reported 
in D2.1 - ACES Architecture definition (M12), and the ACES action library, together with the initial 
definition of agent approaches, as reported in D4.2 – Action language and Library (M12). These three 
deliverables together constitute the first view of the autopoietic approach of ACES to address the 
challenges behind the management of the cloud-edge continuum. 
 
 

1.2 Approach 
 
As the name of the deliverable implies, this document provides an analysis starting from the initial 
data sources that are involved in the ACES ecosystem, to a knowledge model that can be referred to 
and exploited by the different ACES components.  
 
In order to obtain this model, the project has performed multiple activities. During the workshop 
taking place in Darmstadt in the first half of the year, a blueprint for the ACES system was defined. 
During this process a comprehensive set of potential metrics and autopoietic behavior was identified 
and collected. These elements were fundamental for the identification of the data that should be 
considered in the project. In addition to these, the members have performed thorough review of the 
state of the art in scientific, technical and industrial contexts to identify the most relevant information 
that needs to be considered, as well as the means for capturing and collecting that information.  
 
On that basis, the WP has studied the main techniques for capturing that information into a 
knowledge model that would be actionable by ACES agents. This deliverable reports the results of 
this analysis, and the resulting core abstractions of a knowledge model that will be combined with the 
different types of ACES agents to achieve the autopoietic characteristics of the system. 
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1.3 Structure of the document 
 
The structure of the document follows the logical progression presented in the approach. We start 
from the theoretical underpinnings to its practical application. It comprises the following sections: 
  
Chapter 2 covers the Data Sources that can be collected from the ACES architecture. These are 
expressed in the form of metrics of the runtime elements that form part of the overall ACES 
architecture, as well as events that should be recorded and processed for further analysis. The 
information is complemented with details on the architecture of the specific monitoring and data 
collection components of the architecture. As information captured by telemetry systems can be in a 
raw and hard to use state, data processing, cleaning and analysis techniques are also presented. 
Moreover, an examination of the requisite architectural components and mechanisms for data 
acquisition and the aggregation of metrics relevant to the ACES project are presented. 
 
Chapter 3 explores the challenges from this transition from Data to Knowledge. The subsections 
report a discussion on the models, standards, and methodologies employed for knowledge derivation 
and synthesis within edge computing frameworks. 
 
Chapter 4 presents the ACES Knowledge Model. This is the central outcome of this deliverable. The 
chapter details the fundamental aspects of the knowledge model, encompassing the supply and 
demand models and the operational runtime model crucial for the autopoietic operations of the ACES 
platform. To complete this characterization, the section provides a definition of the types of agents 
that will take advantage of this model and reason within the ACES platform.  
 
The deliverable is completed with the main conclusions of this work, and an outline of next steps 
within the work related to the perception of ACES environments.  
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2. Cloud-edge Continuum Data Sources 
ACES components will gather telemetry data from EMDCs. To achieve this objective, we will focus on 
the activities outlined in WP3 – "Data Acquisition, Knowledge Generation, and Organization." One of 
the key deliverables within this work package is the ACES Metrics pipeline. This pipeline is specifically 
designed to capture data from Kubernetes clusters, nodes, and applications hosted in EMDCs. 
Therefore, our approach to build the pipeline will consider technologies related to Kubernetes 
environments. Before delving into the technical components that will be utilized in the pipeline, it's 
essential to highlight the data sources within EMDCs. We categorize these data sources into two 
broad categories: 
 

• Metrics in Kubernetes: System component metrics originated from Kubernetes components 
like: 

o Kube-controller-manager 
o Kube-proxy 
o Kube-apiserver 
o Kube-scheduler 
o Kubelet 

• Application Metrics: Metrics scrapped from applications running in Kubernetes clusters in 
target micro EMDCs. 

• Network Metrics: These metrics are collected directly from the host network stack and/or 
from the EMDC network switches. 

 
The section is structured as follows. First, we present the Metrics pipeline architecture. Then, we 
analyse the tools for telemetry and collection. Finally, we list the target ACES metrics. 
 

2.1 Metrics Pipeline Architecture 
 
The figure below illustrates the Metrics pipeline architecture followed in ACES: 

 
Figure 1 Metrics Pipeline Architecture 

 
In the context of the Metrics Pipeline Architecture, EMDCs' metrics are collected through open-source 
monitoring systems within each EMDC, such as a Kubernetes cluster. These may also include metrics 
collected outside the host, namely those from in-switch metric collectors. Additionally, an abstraction 
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layer exists as the "global" component, which consolidates metrics from the various "local" data 
monitoring systems. The primary role of this "global" monitoring component is to gather and transmit 
the extracted metrics to a metrics extraction job. This job is responsible for receiving the metrics and 
forwarding them to a streaming component for further processing. 
 

2.2 Tools for telemetry and collection 
 

2.2.1 Pull-Push Metrics Extraction Flow 
 
The ACES Metrics Pipeline follows a “pull” – “push” architecture, in particular Local Monitoring 
modules are placed in every EMDC to extract telemetry data. Then local monitoring performs remote 
write operation to expose the local metrics to a Global monitoring instance which is responsible to 
assemble the metrics from EMDCs. Then a component pulls the metrics from Global monitoring and 
produces them to a Streaming Module (Apache Kafka). This flow is depicted in the following figure. 
 

 
 

Figure 2 Metrics Extraction flow 

2.2.2  Technologies 
 
The tools that are used for metrics collection are the following: 

• Local Monitoring (Monitoring System in each EMDC): Prometheus1 and its building blocks 
like alert-manager, kube-state-metrics, node-exporter, Prometheus-pushgateway, 
Prometheus server, and network metrics (e.g., in-switch flow metrics). 

• Global Monitoring (Prometheus Hierarchical Mode2): Hierarchical federation allows 
Prometheus to scale to environments with tens of data centers and millions of nodes. In this 
use case, the federation topology resembles a tree, with higher-level Prometheus servers 
collecting aggregated time series data from a larger number of subordinated servers. To 
enable federation mode it is needed to include the following lines of code to Prometheus 
configuration file (Prometheus.yml) 

 

Table 1 Activate Federation Mode in Prometheus 

scrape_configs: 
  - job_name: 'federate' 
    scrape_interval: 15s 
 

 
1 https://prometheus.io/ 
2 https://prometheus.io/docs/prometheus/latest/federation/ 
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    honor_labels: true 
    metrics_path: '/federate' 
 
    params: 
      'match[]': 
        - '{job="prometheus"}' 
        - '{__name__=~"job:.*"}' 
 
    static_configs: 
      - targets: 
        - 'source-prometheus-1:9090' 
        - 'source-prometheus-2:9090' 

        - 'source-prometheus-3:9090' 
 

• Metrics Scraper: Metrics from the micro datacenters are produced to a Streaming module 
using Prometheus Kafka Adapter3, which is a service that receives Prometheus metrics through 
remote write functionality into JSON and sends them to Apache Kafka (Streaming module) 

 

Table 2 Remote write to Prometheus Kafka Adapter service 

remote_write: 
  - url: "http://prometheus-kafka-
adapter:8080/receive" 

 
• Streaming Module: Confluent Kafka4 used and its building blocks: 

o Confluent Kafka Broker: The Kafka broker is the most important component as it 
maintains the topics and the different partitions. 

o Apache Zookeeper: It is used to manage and coordinate the Kafka brokers in the 
cluster. 

o Confluent Control Center: Is a web-based tool for managing and monitoring Apache 
Kafka in Confluent Platform. It provides a user interface that enables overview of 
cluster health, topic and messages observation, Schema Registry configuration and 
the development of ksqlDB queries. 

 

2.2.3  Extracted Data 
 
The extracted data are pipelined to a Streaming Module through the Metrics Scraper (Prometheus 
Kafka Adapter) which is a service that receives Prometheus metrics through remote write operation 
configured in Prometheus configuration and each metric is sent to Kafka broker periodically, (e.g., 
every 30 seconds). The schema that is used from Metrics Scraper is the following: 
 

Table 3: Metrics Abstract Schema 
{ 
    "namespace": "io.prometheus", 
    "type": "record", 
    "name": "Metric", 
    "doc:" : "A basic schema for representing Prometheus metrics", 
    "fields": [ 
        {"name": "timestamp", "type": "string"}, 

 
3 https://github.com/Telefonica/prometheus-kafka-adapter 
4 https://www.confluent.io/ 
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        {"name": "value", "type": "string"}, 
        {"name": "name", "type": "string"}, 
        {"name": "labels", "type": { "type": "map", "values": "string"} } 
    ] 
} 

 
Table 4: Example Record 

{ 
  "labels": { 
    "__name__": "go_memstats_mcache_inuse_bytes", 
    "instance": "prometheus-prometheus-pushgateway.default.svc:9091", 
    "job": "prometheus-pushgateway" 
  }, 
  "name": "go_memstats_mcache_inuse_bytes", 
  "timestamp": "2023-11-27T13:36:40Z", 
  "value": "4800" 
} 

 

2.3 Consolidated ACES metrics 
 
Metrics collection enables the ACES platform to acquire real-time information about its current state. 
These data and past metrics information represent the fundamental basis for making informed 
workload placement decisions and adapting to environmental and demand changes. 
  
Metrics can be categorized into three levels within the ACES platform hierarchy. At the first (top) 
level, there are one or multiple clusters. Each cluster contains multiple nodes at the second level. 
Nodes also contain multiple workloads at the third level. Considering these levels, we propose the 
following categories of metrics: application-level, node-level, and cluster-level. At each level, we 
specify the raw metrics that should be collected where feasible. Additionally, we offer some ideas of 
metric aggregations and transformations that may be more beneficial than the raw metrics. It is 
crucial to elucidate the rationale behind opting for raw metrics rather than aggregations. By collecting 
metrics in their purest form, we can give the platform users the utmost flexibility to aggregate and 
transform the data according to their specific business requirements, for example, when creating 
SLIs. Moreover, the platform might initially employ one metric aggregation and later switch to a 
different, more effective aggregation. If the platform were to collect only the aggregated form of the 
metrics, such a transition would not be possible. To ensure smooth interoperability and adhere to a 
standardized approach, we recommend collecting the specified metrics (and traces) in alignment with 
the OpenTelemetry5 standard. 
  
For each metric level, we have identified the following raw metrics and some example aggregations 
and transformations. 
 

2.3.1  Application-level Metrics 
 
Application-level metrics represent the platform's most focused metrics, offering a detailed 
perspective on the pod's state over time. This information is vital for confirming that the pod operates 
as anticipated. In cases where deviations occur, these metrics assist in identifying necessary actions 
to correct the situation and ensure optimal performance. Table 5 includes a list of application-level 
metrics. 
 

 
5 OpenTelemetry, https://opentelemetry.io/docs/ 
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Table 5: List of application-level metrics. 

METRIC  METRIC NAME  DESCRIPTION  

Pod CPU 
usage  kube_pod_overhead_cpu_cores  

Current pod CPU usage measured in 
millicores. The rescheduler could take the 
historical variability of this metric into 
account to schedule the pod on a node 
that has the resources needed to handle 
the CPU usage spikes or usage that is 
commonly higher than the requested 
amount. Additionally, this metric could be 
used in scaling decisions.  
A possible transformation of this metric is 
CPU percentage usage, where 100% 
could either be the CPU request of the 
CPU limit of the Pod.  

Pod memory 
usage  kube_pod_overhead_memory_bytes  

Memory usage of the pod measured in 
bytes. This metric could be used in 
scaling decisions.  
Similarly, as the CPU usage, a 
percentage-based transformation can be 
created.  

Pod GPU 
usage  kube_pod_overhead_gpu_cores  Current pod’s GPU usage measured in 

millicores.  
Pod 
ephemeral 
storage 
usage  

ephemeral_storage_pod_usage_bytes  The current pod’s ephemeral storage 
usage measured in bytes.  

Pod total 
readiness 
and health 
checks - with 
failure bool 
label  

kube_pod_status_ready  
kube_pod_status_phase  
kube_pod_status_reason  

Each probe’s result is reported as a 
metric. This metric could be used to 
construct an SLI that is part of an SLO 
addressing availability and fault tolerance. 
The scheduler should take such metrics 
into account and try to satisfy the SLOs.  

Request 
duration  request_duration_milliseconds  

The duration of the request. This metric 
could be used to construct SLIs and 
SLOs. The platform should try to achieve 
the desired SLO by, for example, scaling 
and moving some pods closer so that the 
latencies between them are reduced. To 
determine which part of the call chain to 
optimize, the scheduler would require 
trace information besides the metrics.  
Some possible aggregations of this metric 
are request duration per second, 
percentage of total request durations that 
are larger than 1 second, etc.  

Total 
requests and 
no. of 
concurrent 
requests  

requests_total  
  

This metric could be used to construct 
SLIs and SLOs. The platform should try to 
achieve the desired SLO by, for example, 
scaling and moving some pods closer so 
that the latencies between them are 
reduced. To determine which part of the 
call chain to optimize, the scheduler 
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would require trace information besides 
the metrics.  
Based on the total requests metric, a 
throughput metric can be constructed, for 
example, the number of requests per 
second.  

Garbage 
collection 
metrics  

memstats_gc_sys_bytes  
memstats_last_gc_time_seconds  
memstats_next_gc_bytes  

If no memory limit is set, the platform 
could detect memory leaks based on the 
garbage collection results (along with 
heap usage metrics).  

 
It is important to note that for the ACES platform to fully understand the complexities and 
interrelations of pods, relying solely on metrics is insufficient. In order to gain insights into 
communication patterns, microservice call bottlenecks, and more, traces play a crucial role in 
observability. Just like metrics, traces should adhere to the OpenTelemetry specification for 
comprehensive data collection. 
 

2.3.2  Node-level Metrics 
 
Node-level metrics provide information on the current resource usage of the node, aiding in the 
calculation of available resources per node, which plays an essential role in workload placement 
decisions. Additionally, node-level metrics offer insights into the node's connectivity with other 
nodes, resource costs, and node reliability. Table 6 lists node-level metrics. 
 

Table 6: List of node-level metrics. 

METRIC  METRIC NAME DESCRIPTION  

Node CPU 
usage  node_cpu_usage_seconds_total  

Node’s CPU usage measured in 
millicores.  
Based on the node’s total CPU core 
descriptor, the available CPU can be 
calculated. The scheduler should take this 
metric into account in order to place only 
pods that request less than or equal 
available CPU amount on such nodes. 
Furthermore, the scheduler could, with the 
CPU usage metric among other metrics, 
ensure that the load is evenly spread 
across nonelastic (edge or reserved) 
nodes. In this case, the transformation to 
the percentage-based CPU usage could 
be used.  

Node 
memory 
usage  

node_memory_working_set_bytes  

Node’s memory usage measured in bytes. 
Based on the node’s total memory 
descriptor, available memory can be 
calculated. The scheduler should take this 
metric into account to place only pods that 
request less than or equal available 
memory on such nodes. Furthermore, the 
scheduler could, with the memory usage 
metric, among other metrics, ensure that 
the load is evenly spread across 
nonelastic (edge or reserved) nodes.  
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Node GPU 
usage  node_gpu_usage  

Current node’s GPU usage. How this can 
be measured, highly depends on the 
GPU’s manufacturer. The scheduler 
should take this metric into account in 
order to provide a sufficient amount of 
GPU power to each pod. Furthermore, 
Pods should be scheduled in a way that 
they can take advantage of all the GPUs 
available in the cluster.  

Node 
ephemeral 
storage 
usage  

ephemeral_storage_node_usage_bytes  

The current node’s ephemeral storage 
usage measured in bytes. Based on the 
node’s total ephemeral storage descriptor, 
available ephemeral storage can be 
calculated. The scheduler must ensure 
that each pod has the requested amount 
of ephemeral storage.  

Node swap 
usage  node_swap_usage_bytes  

Node’s swap usage measured in bytes. 
The platform should try to either avoid or 
minimize swap usage.   

Node to 
nodes 
latency  

node_latency_milliseconds  

Each node could periodically perform 
pings to other nodes in the cluster to 
determine latencies, measured in 
milliseconds, between them. Scheduler 
can use this metric to schedule Pods that 
frequently communicate or require low 
latencies for their communication, closer 
than the rest of the pods. Furthermore, 
when performing periodic pings, some 
pings might fail. Based on this 
information, a voting algorithm can be 
constructed that outputs the node’s 
reliability. This information can be used by 
the scheduler to place pods that can 
easily handle disruptions on nodes that 
are not as reliable and place pods that are 
either critical or cannot gracefully handle 
disruptions on nodes that are reliable. 
Edge nodes are apparent candidates for 
unreliability, along with spot nodes in the 
cloud.  

Node to 
nodes 
bandwidth 
usage  

node_bandwidth_bps  

Each node could measure how much 
egress bandwidth, measured in bps, is 
being used. This information can be used 
to calculate the available bandwidth, but 
only if the following can be performed 
without causing too many disruptions to 
the running pods. Each node can 
measure the maximum egress bandwidth 
(or probably available bandwidth) to the 
rest of the nodes, and it can ask other 
nodes to gather information about the 
maximum (available) ingress bandwidth. 
The scheduler can use this information to 
reduce the bandwidth usage between 
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nodes, but at the same time, ensure 
required fault tolerance levels and provide 
each pod the requested bandwidth.  

Node cost  node_cost_aps  

Cloud provider’s node costs vary based 
on many different factors. Each node in 
the cloud should output how much it costs 
per second to run it (measured in amount 
per second). This should include IO, 
storage, compute, and other costs which 
should be reduced to a single cost metric. 
Edge nodes would have to measure their 
power usage, networking costs, amortized 
hardware costs, maintenance costs, etc., 
and reduce this to a single cost metric. 
The scheduler should use this metric to 
reduce the operating costs, but at the 
same time, take into account all the 
required requirements (fault tolerance, 
SLOs, etc.). For example, this could mean 
reducing the load in the cloud in order to 
reduce the required number of nodes, 
which would result in lower cost or 
deprioritizing edge nodes where the 
electricity cost is high.  

System call 
statistics  node_syscall_{type}_total  

Number of system calls triggered per a 
time interval, frequently called of a system 
call, frequently called of a type of system 
calls (e.g., open, read, write, exec, exist, 
kill)  

 

2.3.3  Cluster-level Metrics 
 
As a cluster consists of many nodes, cluster-level metrics predominantly serve as aggregations of 
node-level metrics. The utility of these metrics in workload placement and scaling decisions may 
need to be revised, given that aggregations often simplify the underlying node-level specifics. 
However, from the standpoint of platform administrators, these metrics could be monitored by means 
of monitoring tools, such as the Grafana dashboard6, or directly in network switches. Table 7 shows a 
list of cluster-level metrics. 
 

Table 7: List of cluster-level metrics. 

METRIC  METRIC NAME  DESCRIPTION  

Network flow 
types  network_flow_type  

Network metrics computed for different 
flow types. Examples include [MAC src, 
IP src], [IP src], [IP src, IP dst], and [5-
tuple]. Different flow types enable 
different aggregation levels, from 
coarser to finer-grained monitoring 
modes. 

Network flow 
counters  network_{type}_total  Per-flow counters for the different flow 

types. Examples include number of 
 

6 https://grafana.com/grafana/dashboards/6417-kubernetes-cluster-prometheus/ 
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packets, number of bytes, squared 
number of bytes. Maintaining these 
stateful counters in network switches 
offers global visibility for all 
communications at the EMDC level.  

Network flow 
statistics  network_{type}_statistics  

Unidirectional statistics, tracking 
outbound traffic, including weight, 
mean, std. deviation, time interval. 
Bidirectional statistics, considering both 
inbound and outbound traffic: 
magnitude, radius, approx. covariance, 
and correlation coefficient. Computing 
different statistics enable support for 
different monitoring applications (e.g., 
anomaly detection, malicious traffic 
detection, traffic engineering, etc.) 

Cluster total 
resource 
usage  

cluster_cpu_usage_seconds_total  
cluster_memory_working_set_bytes  
cluster_gpu_usage  
cluster_bandwidth_bps  

An aggregated metric that is calculated 
as a sum of node-level resource 
usages. For example, total CPU usage, 
total memory usage, total GPU usage, 
total bandwidth usage, etc. This metric 
could be useful, for example, if the goal 
of the platform is to reduce the 
bandwidth usage within the cluster. Or, 
to provide an overview of the platform’s 
resource usage which to provide an 
overview of the platform’s resource 
usage, which can be perhaps used to 
ensure that the load is evenly 
distributed across many clusters. Both 
the aggregated metric and the 
transformed percentage-based metric 
can be considered.  

Cluster total 
cost  cluster_cost_aps  

An aggregated metric calculated as a 
sum of node-level memory usages. 
Provides an overview and can be used 
to track the workload placement 
optimization effectiveness.  

Unhealthy 
pods in the 
cluster  

pod_collector_zone_health  
pod_collector_unhealthy_pods_in_zone  

Number of unhealthy pods in the 
cluster.  

Unhealthy 
nodes in the 
cluster  

node_collector_zone_health  
node_collector_unhealthy_nodes_in_zone  

Number of unhealthy nodes in the 
cluster.  

 

2.3.4  Events 
 
Certain events could be pivotal in optimizing the operation of the ACES platform. These events could 
encompass a spectrum of interactions ranging from service-initiated actions to security-related 
events. Additionally, monitoring certain events in ACES could lay the groundwork for analytics, 
enabling to gain insights into specific behaviors and refine the design and features. Table 8 lists 
events that have the potential to be monitored in ACES. 
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Table 8 List of events. 
EVENT  DESCRIPTION  

Failure or error  

Failure or error events in the system are deemed most crucial as 
they have critical implications for availability and stability. 
Examples of such events are image retrieval errors or incorrect 
configuration errors.  

Workload eviction  

During system operation, the orchestrator may terminate specific 
pods due to several reasons, such as insufficient resources. 
Monitoring and understanding these events are necessary to 
optimize system configuration and resource misallocations.  

Workload scheduling  
Events related to scheduling (e.g., scheduling failure) provide 
insight into resource provisioning and enable rectifying the 
scheduling configuration or resource scaling.  

Storage  

Workloads and applications normally rely on external/volume 
storage to store data and support runtime. Storage related 
events indicate potential issues with mounting, attaching, 
capacity or other general storage failures.  

Network  

Workloads, storage, pods, nodes, and clusters are generally 
interconnected via a network. Network events, such as link down 
event or bandwidth limit exceeded event, enable dynamic 
reconfiguration, rescheduling, or more optimal traffic rerouting.  

Workload/Application-specific  
Workload and application events provide insight into 
instrumented runtimes, which enable observability of state and 
potential issues, e.g., application bugs or performance.  

Node-specific  

Node events provide insight into behaviour of nodes in the 
system. Such events may relate to specific node issues (e.g., 
node unhealthy, node not ready, port conflict) or aid in 
maintaining observability for other components (e.g., node 
reboot event).  

Cluster-specific  

Cluster events provide insight into behaviour of clusters in the 
system. Such events may relate to specific cluster issues (e.g., 
cluster control plane unhealthy) or aid in maintaining 
observability for other components (e.g., cluster uptime).  
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3. From data to knowledge 
After presenting the set of considered data sources that are being considered at ACES, in this section 
we present the alternatives for capturing that knowledge. We first explore existing standards for 
capturing that information in a cohesive, semantically expressive format that can be adjusted to the 
requirements of the project. Following that, we present potential data processing techniques that can 
take as input the raw metrics described in the previous section and transform them into the 
knowledge required by agents to perform their reasoning. 
 

3.1 Knowledge capture models and standards 
 
In this section we analyze the existing alternatives for capturing the knowledge relevant for the ACES 
agents. We explore both standards from the academic literature in the field of ontologies as well as the 
main approaches followed by industry and research projects, in order to select the ideal abstractions 
to capture all the relevant characteristics. 
 

3.1.1 Ontology languages for knowledge capture  
 
Ontologies are defined as a mean to formally model the relations and entities of a determined 
structure or domain. That is, an ontology is to depict the internal structures that can include both 
entities and relations. To develop and deploy them, several specialized languages have been used for 
a long time  [3]. At first, the languages used were nothing but variations of web languages, or even 
web languages themselves, highlighting the connection of ontologies with the semantic web. 
Amongst the ones that are web languages by themselves, it is possible to find XML (eXtended 
Markup Language), RDF (Resource Description Framework), or RDF Schema. The main advantage of 
using these is that they have no learning curve for anyone familiar with them. The downside, as 
obvious as it is, is that they lack the specialization and precision that others might have. It is also 
worth noting that these languages are built one upon another: RDF Schema upon RDF, and RDF upon 
XML. This leads to each one being more expressive than the previous ones, having a more extensive 
syntax means that they cover a larger ground. 
 
At the other end of the spectrum, we find the more traditional ontology specification languages. 
Among these we find Ontolingua, OKBC (Open Knowledge Base Connectivity), OCML (Operational 
Conceptual Modeling Language), FLogic (Frame Logic), and LOOM [3]. Since these languages were 
developed with the creation of ontologies in mind, they have many resources that are ontology-
oriented, including rules for reasoning, the ability of performing non-monotonic inferences, as well as 
ensuring the desired level of expressiveness for the 
underlying logic. Despite all this, some of the languages lack the pragmatism that would be desirable 
for the quick development of ontologies and have been more focused on being a solid foundation to 
ensure the correct performance of the ontologies that use them.  
 
As a combination of all these previous languages it is possible to find the web-based ontology 
specification languages. These languages, while maintaining the main core of web-based languages, 
were introduced to have a much higher appeal to the development of ontologies that the traditional 
ontology languages have. Among these is possible to find XOL (XML-based Ontology exchange 
Language), SHOE (Simple HTML Ontology Extension), and OIL (Ontology Interchange Language). 
These languages aimed at solving the issues that the previous categories had, i.e., web languages 
lack of specialization, and traditional ontology languages lack of quick applicability. Usually, these 
languages were developed as a subset of previous languages, as in the case of XOL, which takes a 
subset of OKBC and includes some of the characteristics and syntax of XML, or OIL based on subsets 
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of RDF, and OKBC. This leads to them having more value from an ontological point of view yet being 
more applicable than the pure web languages above. 
 
Nevertheless, despite all of the above, the ontology languages that have become a key element in 
the development of the modelling that represent ontologies are RDF Turtle7 and OWL (Web Ontology 
Language)8, aside from all their offspring. The first one, RDF Turtle, stems from the RDF web 
language incorporating a new syntax called Turtle that allows the RDF generated graph to be 
processed in compact and plain text which includes abbreviations for the most common data types 
and patterns that are usually used. It also provides compatibility with other languages such as 
SPARQL following the W3C recommendations. On the other hand, OWL, that stems into OWL Lite, 
OWL DL, and OWL Full (among others), is characterized for using a formal syntax akin to that of RDF 
but has found its way into healthcare research. The language has gained an unusual level of traction 
and has helped in the development of its second version, OWL 2, that included several improvements 
proposed by the community. Among these advantages we find the compatibility with ontology 
standards such as Protégé9, or established semantic reasoners such as Pellet10, HermiT11, or some 
minor ones such as RacerPro12. 
 
Such languages created to help with the development of ontologies are able to model “almost 
anything”, one of the main reason that they are actually such a powerful and useful tool. But that also 
has its own drawbacks, as the modelling of the specifications becomes a task of utmost importance 
that can lead to certain critical failures if it is not addressed correctly. Because all of this, the 
modelling of the specifications has become a hot topic for ontologies, which has seen some 
interesting results in that respect. Some include the development of specification languages that 
ensure the creation of ontologies without any kind of inconsistencies, errors, or ambiguity. An 
example of this can be found in ReqDL[6], a language whose syntax was developed so engineers can 
express the system requirements in a simple and easily understandable way, yet far away from the 
issues derived from using natural language. In particular, the language is developed with the idea of 
having the different requirements attached to different levels. That way it can distinguish, among 
others, between the stakeholders requirements, the system requirements, and the component 
requirements, while keeping the same syntax for all of them. This leads to a clear and streamlined 
syntax that can capture the requirements without cluttering them and being able to formalize them 
with ease. 
 
This work of establishing the specifications is not only supported by specific ontology languages like 
ReqDL above, but also uses ontologies themselves to cover the structure that the specifications 
should have, dividing them into the different abstraction levels, and ensuring that the relations 
created are the right ones. For that matter, the ontology usually provides support for a specific 
domain and focus, ensuring that no question outside of the domain at hand goes into the 
requirements specification. Furthermore, it helps with the formulation of competence questions that 
constitute the validation process of any requirements specifications. After all of this, often an 
ontology is created once the process has been followed. That means that the ontology created 
captures all the requirements, and that those requirements have been modelled with all the benefits 
that correspond to the usage of ontologies. 
 
Similarly, the creation of ontologies has its own model for specifications, that while is not of use in the 
capture of the requirements of any other domain, allows for the creation of ontologies that will 

 
7 https://www.w3.org/TR/turtle/ 
8 https://www.w3.org/TR/owl-features/ 
9 https://protege.stanford.edu/ 
10 https://github.com/stardog-union/pellet 
11 http://www.hermit-reasoner.com/ 
12 https://franz.com/agraph/racer 
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validate the specifications given. In that sense, it could be argued that this is a meta-modelling of the 
specifications. This ontology modelling is supported by the W3C and, as such, it constitutes an 
official modelling tool for the specifications of ontologies. Going into details, this provided model 
introduces a series of modules that support the lexicon on which ontologies are defined, and a series 
of tools to ensure the well-being of the ontology just created. The modules that constitute the lexicon 
include tools to deal with the syntax and semantics, the decomposition, the variations and 
translations, and the linguistic metadata. The other tools include the ability of using external 
ontologies to the one being created, a method to use linguistic resources such as lexical nets, and a 
way to create a relation between the lexicon chosen for the ontology and some basic languages such 
as the Simple Knowledge Organization System, the Lexical Markup Model, and the Open Annotation 
Model [4]. 
 
Despite ontologies being a great tool, they are far from perfect, as they usually require high expertise 
or a deep knowledge of certain formalisms and frameworks to make them work correctly. With that in 
mind it is possible to look for alternatives that help to capture knowledge on a more streamlined way, 
and with less hassle involved. For that matter, one would need to address what part of the work that 
ontologies do is going to be substituted. Because the way ontologies work is not only by capturing 
the knowledge, but also ensuring its consistency and explicitating its structure. That is, one might 
want to preserve the formal aspect that ontologies bring to the knowledge that they represent, or 
maybe the interest will reside on making the relations that they represent widely, and quickly, 
available.  In the case that one might want to preserve the formal aspects, it is possible to be looking 
at technologies that focus on sharing the inferences of the ontologies, that is, helping to show what 
conclusions come naturally from the knowledge captured by the ontology. On sharing the semantic 
knowledge hold by the ontologies, that is, to ensure the inferences made from an ontological 
structure can be reused for other applications without uncertainty. On sharing group knowledge, that 
is, to ensure that the right knowledge generated by ontologies taking place on a large scale is 
selected, rather than mess around with the many different sources available. Nevertheless, this kind 
of technologies is yet not widely available or has not been developed far from its formalisms. The 
most extended one are the ones named as knowledge brokers[7]. Knowledge brokers are usually 
seen as an intermediary between the different sources of information and can help to provide the 
right data as needed, where and when needed. They work by transferring and exchanging knowledge 
from where it is abundant to where it is lacking. This means that knowledge brokers are not the 
originators of knowledge, but rather a technology to be used to capture knowledge that already 
exists and, by its usefulness, needs to be transferred. 
 
The most common theme around knowledge capture system is that they are based around the 
application of ontologies[8]. This means that while many different systems based on the previous 
approaches have been developed, they are always, at least, partially inspired by the ontological 
approach. Besides using an ontology-inspired structure directly, other approaches reuse the 
description logics developed for ontologies, thus capturing the formal intention of ontologies. All in all, 
the knowledge capture alternatives to ontologies are just a differentiated application of them[9]. 
 
 

3.1.2 Industry standards for edge continuum information 
 
This section describes a set of Kubernetes based edge management tools that support data 
management platforms. In our context, Data management means a range of functionalities that 
extract knowledge from telemetric data collected from EMDCs and data describing the specification 
of the end-user applications. The data management platform to adopt in ACES will be used to 
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transform data into knowledge (semantic enrichment). In this subsection we present a selection of 
edge management tools: Rancher13, Zededa14, Spectro cloud15, OCM16 and Nuvla17. 
 

3.1.2.1 Rancher 
 
Rancher is an open-source container management platform to deploy and manage Kubernetes clusters. 
Rancher supports multiple Kubernetes distributions and provides full support for the two lightweight 
Kubernetes platforms: K3s and RKE218. 
 
The incorporation of Prometheus with Rancher enables Rancher to perform monitoring and alerting 
functions on clusters. While Rancher lacks a native feature specifically designed for in-depth data 
operations, the tool provides the flexibility to develop Rancher extensions, allowing users to customize 
and enhance its capabilities according to their specific needs. 
 

3.1.2.2 Zedada 
 
Zededa’s platform is designed to enable the deployment of virtualized applications on edge devices. 
The Zededa Edge solution comprises two key architectural components: EVE-OS and ZEDCloud. 
 
EVE-OS boasts features such as broad hardware support, accommodating CPUs, GPUs, FPGAs, and 
popular selections from AMD, Intel, NVIDIA, Xilinx, and ARM. Currently, EVE-OS is validated to operate 
on 80 distinct hardware models and includes a fundamental open-source controller within Project 
EVE. 
 
The ZEDCloud, functions as the centralized management and control plane and employs an open 
orchestration API to connect with EVE-OS deployed on distributed edge hardware. As for the data 
management and as detailed in ZEDEDA web site, a user application is represented as a metadata 
manifest. This manifest describes the various software pieces and how they are run on any given 
ZEDEDA Edge Node. The Metadata manifest is typically defined by the application developer or 
software provider. It describes the purpose of the application, the intended usage, and the required 
resources and services to run it. 
 

3.1.2.3 SpectroCloud / Palette 
 
Spectro Cloud offers a cloud-native management platform named Palette designed to streamline the 
deployment, administration, and scaling of Kubernetes clusters in various environments, 
encompassing on-premises and multi-cloud configurations. The platform is geared towards providing 
a cohesive and standardized management experience for Kubernetes clusters, irrespective of their 
deployment locations. 
 
Palette features a graphical user interface (GUI) that serves as an interface for research-oriented 
data management, encompassing meticulous metadata management. The GUI provides users with a 
visual platform for efficient and intuitive interactions with data, streamlining various tasks related to 

 
13 https://www.rancher.com/ 
14 https://help.zededa.com/hc/en-us 
15 https://www.spectrocloud.com/ 
16 https://open-cluster-management.io/ 
17 https://nuvla.io/ui/ 
18 https://docs.rke2.io/ 

https://docs.rke2.io/
https://help.zededa.com/hc/en-us
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research data management. Moreover, Palette is equipped with an Application Programming Interface 
(API) designed to expose data programmatically. 
 

3.1.2.4 Kermada 
 
Karmada, also known as Kubernetes Armada, serves as a Kubernetes management system that 
allows the deployment of cloud-native applications across various Kubernetes clusters and cloud 
environments without requiring modifications to the applications themselves. Leveraging Kubernetes-
native APIs and offering sophisticated scheduling capabilities, Karmada facilitates a genuinely open 
and multi-cloud Kubernetes experience. Karmada is location agnostic and supports clusters in the 
public cloud, on-prem, or edge. 
 
Karmada lacks built-in data management capabilities. Prometheus can be employed to interact with 
the API and gather valuable insights into the system's performance and health. While Karmada may 
not have native data management features, its API compatibility and integration with tools like 
Prometheus provide a pathway for users to extract and analyze relevant data for monitoring and 
optimization purposes. 
 

3.1.2.5 Nuvla 
 
Nuvla is an edge and a container management platform built upon open-source software and open 
standards. The Nuvla platform allows you to configure any number of Container-as-a-Service (CaaS) 
(e.g. Docker Swarm, Kubernetes) endpoints. This means you can mix and match public clouds, private 
clouds and infrastructure, as well as edge devices (running NuvlaEdge software, see details below). 
 
The Nuvla platform exposes a powerful REST API. This API allows developers to integrate Nuvla into 
third-party systems, script it and even use it as Infrastructure as code (IaC). This enables a simple 
and effective edge-to-multi-cloud solution. The platform is application centric, hardware agnostic, 
cloud neutral and container native. This allows end users to manage any containerized application 
across a fleet of edge devices and container-orchestration engines. 
 
The NuvlaEdge software aims to provide a platform for managing and orchestrating edge computing 
resources. It helps organizations deploy and manage applications at the edge of the network 
efficiently. This can be especially valuable in scenarios such as Industrial Internet of Things (IIoT), 
smart cities, and other use cases where distributed computing and rapid data processing are critical. 
 
Once installed, NuvlaEdge is a turn-key solution. From factory settings, you plug it in, power it up and 
you are good to go. The automated and secured registration process ensures that each edge device 
is yours and uniquely configured and initialized. This can even include an on-demand remote secured 
VPN access gives you access to your devices and applications as you need it. 
 
In addition, Nuvla supports a data management platform that leverages the positive attributes of S3-
based services and introduces a comprehensive global management system for metadata. The goal 
is to enhance the efficiency of search functionalities across different service providers. In terms of 
implementation, the model consists of three core Nuvla resources: 
 

• data-object: This resource acts as a proxy for data stored in an S3 bucket/object from a 
specific provider. It manages the lifecycle of S3 objects, simplifying data upload and 
download processes. 

• data-record: This resource allows users to add additional, user-specified metadata for an 
object. Enabling the attachment of rich, domain-specific metadata to objects enhances the 
precision of searching for relevant data. 
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• data-set: This resource defines dynamic collections of data-object and/or data-record 
resources through filters. Administrators, managers, or users can define these collections, 
providing a flexible and customizable approach to data organization. 

 
Collectively, these resources establish a versatile data management framework applicable to a broad 
range of use cases. The typical workflow involves creating a data-object (implicitly creating the S3 
object), optionally adding metadata using a data-record object, and finally, finding and using the 
relevant data-object resources included in a data set. Nuvla facilitates the "using" element by binding 
data types to user applications capable of processing the data, offering seamless integration 
between data management and application utilization. 
 

3.1.3 FIWARE NGSI-LD 
 
NGSI-LD19 is a standard designed to foster better interoperability and information exchange across 
IoT platforms. The language has been standardized at the European Telecommunications Standards 
Institute (ETSI). NGSI-LD builds upon the legacy of the NGSI-9/10 interface, which was initially 
proposed in the FIWARE20 platform, a suite of public, royalty-free, and open-source software 
components to create smart applications.  
 
The "LD" in NGSI-LD stands for Linked Data, which is a method of publishing structured data so that 
it can be interlinked and become more useful through semantic queries. NGSI-LD facilitates the 
representation, exchange, and querying of context information across different systems. It leverages 
the power of linked data and semantic web technologies, such as Resource Description Framework 
(RDF) and Web Ontology Language (OWL), to enhance the capabilities of context-aware systems. 
Moreover, models can be serialized through JSON-LD21 in several formats to ease its readability and 
interoperability. 
 
The core scope of NGSI is context information capture. The specification combines modelling 
capabilities to identify context elements with a standardized API for context information management 
that can be used to support a wide range of smart applications. Context information is flexible 
enough, with context entities representing the state of any element; an entity could be anything from 
a temperature sensor in a smart home to a Kubernetes cluster node. 
 
Entities are the base information elements from the specification. An entity is represented by a unique 
identifier (URI) and a type. For example, a node could be an entity with a unique ID and a type such as 
"Node". Properties are the attributes or characteristics of an entity. They can include basic data types 
such as numbers or strings, but can also be more complex, including structured values or even 
arrays. For instance, a vehicle's speed can be a property with a numeric value. Relationships define 
how entities are connected to each other or to other resources. A relationship is also a type of 
property, but instead of a direct value, it points to another entity or an external resource. These three 
concepts are shared by all linked data specifications, such as the widely popular property graph 
model supported by the query language Cypher and databases such as Neo4J22 or Cypher23. 
 
The combination of extensibility, interoperability, and compatibility of this specification make it ideally 
suited to be used as the base abstraction for the ACES knowledge model. 
 

 
19 https://www.etsi.org/deliver/etsi_gs/CIM/001_099/006/01.01.01_60/gs_CIM006v010101p.pdf 
20 https://www.fiware.org/ 
21 https://json-ld.org/learn.html 
22 https://neo4j.com/ 
23 https://opencypher.org/ 
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3.1.4 Available datasets 
 
As final data reference points for defining the ACES knowledge model we have evaluated the most 
important industrial datasets that provide metrics and details about existing distributed computing 
infrastructure. Ideally we would use sources that are of the same nature of the ACES platform, but its 
novelty, and high level of heterogeneity make it impossible for any existing source to be taken as-is. 
Nonetheless, these datasets can provide unvaluable for guiding the design of our platform. 
 
Datasets contain workload information that can be adapted to train and refine the agent models that 
will constitute the orchestration components of ACES before the full system is prototyped, and actual 
metrics can be obtained. For this purpose, we have evaluated the most related datasets publicly 
available. Within the ACES project we are defining a reference EMDC to have a baseline system upon 
which the whole architecture will be executed. Datasets should describe results taken from an 
infrastructure that is similar up to some extent to the ACES EMDC we are targeting in the project. To 
do so, datasets should have information about the state of hardware resources, e.g. memory, 
storage, CPU, GPUs and other specialized dedicated hardware. The execution platform should be 
similar to the selected Kubernetes specification that is described in our ACES D2.1 document. 
Additionally, from a workload point of view, these datasets should contain information about how 
many resources of each type were available, to characterize the maximum supply, as well as the 
amounts of each resource requested, and the duration for these resource requests.   
 
We checked several datasets, and the majority of ML-oriented sets are far from the targeted ACES 
domain. UCI Machine Learning repository24 provides a collection of several datasets, but none of 
them are applicable to ACES: The same applies to both KITTI25 a vision dataset for autonomous 
driving, and UADETRAC26, a Real-world multi-object detection and multi-object tracking dataset. The 
NSL-KDD27 dataset is more closely related to the ACES domain, as it provides network security 
traces, but they are not widely applicable to the whole runtime platform. 
 
There are two main sources of datasets that provide highly valuable data for ACES. These are 
provided by two of the main public cloud providers: Alibaba and Microsoft Azure. We provide a short 
summary of each dataset repository: 
 

• Alibaba Cluster Trace Program28: This program is published by Alibaba Group. By providing 
cluster trace from real production, the program helps the researchers, students and people 
who are interested in the field to get better understanding of the characteristics of modern 
internet data centers (IDC’s) and the workloads. So far, four versions of traces have been 
released: cluster-trace-v2017, cluster-trace-v2018, cluster-trace-gpu-v2020, and cluster-
trace-microservices-v2021. 

• Microsoft Azure Traces29: This repository contains public releases of Microsoft Azure traces 
for the benefit of the research and academic community. There are currently two classes of 
traces: VM Traces and Azure Functions Traces. 

 
These datasets provide large-scale metrics with the internal details of resource capabilities and 
workloads of large-scale datasets. While these are not identical to the ACES platform, they do 
present important similarities in the type of resources, and contain the dynamics and patterns found 

 
24 https://archive.ics.uci.edu/ 
25 https://www.cvlibs.net/datasets/kitti/ 
26 https://detrac-db.rit.albany.edu/ 
27 https://www.unb.ca/cic/datasets/nsl.html 
28 https://github.com/alibaba/clusterdata 
29 https://github.com/Azure/AzurePublicDataset 
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in real user workloads.  Therefore, they will be used during the initial stages of the project to aid in 
the knowledge model design, as well as in the preparation of synthetic datasets to train and tune the 
models.  
 
The datasets present some differences, but we provide for reference further details of the most 
recent one from Alibaba (2023, where a mixed CPU-GPU workload is shared): 

• The file openb_pod_list_default.csv contains 8152 tasks submitted to the GPU cluster, 
listing their resource specifications, QoS, phase and creation/deletion/scheduled times. 

• The files openb_pod_list_*.csv emphasizes certain types of workloads such as CPU-only 
tasks, GPU-sharing tasks, etc.  

Table 9 Sample dataset from Alibaba 2023 dataset 

 
 
The traces provide fine-grained information. For reference, entries are listed as pods, where each 
entry has following specification: 
 

• cpu_milli: Number of CPUs requested (in milli) 
• memory_mib: Main memory requested (in MiB) 
• num_gpu: Number of GPUs requested (integers from 0 to 8) 
• gpu_milli: Detailed GPU requested for GPU-sharing workloads (i.e., num_gpu==1) (in milli). 
• gpu_spec: Required GPU types, For example, nan means no GPU type constraints while 

V100M16|V100M32 means the task can run on NVIDIA V100 with either 16GB VRAM or 
32GB VRAM. 

• qos: Quality of Service (e.g., Burstable, Best Effort (BE), Latency Sensitive (LS)) 
• pod_phrase: Succeeded, Running, Pending, Failed 
• creation_time: Timestamp of creation (in seconds) 
• deletion_time: Timestamp of deletion (in seconds) 
• scheduled_time: Timestamp of being scheduled (in seconds) 

 
 

3.2  Techniques for knowledge inference and creation 
 
The collected metrics and external accessory datasets contain information that is often too low level 
to be usable by the ACES components. Agents need well structured, and formatted features that can 
be high-level enough to enable understanding the runtime behavior of the different services, 
understanding past performance and enabling autopoietic decision making. In this section we briefly 
describe the main data processing techniques that will be used in the project as part of the data 
management flows to feed our knowledge model.  
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3.2.1 Time series analysis  
 
In general, when a source of data is accessed in a regular manner over time, the information that can 
be extracted from it is not only limited to the data samples themselves. The relationship between 
those samples can also contain valuable information. When those samples are structured as a 
sequence of measurements sorted by the time they were obtained, they form what is called a Time 
Series.  
  
A time series is a sequence of data points collected and recorded at regular intervals over a period of 
time. This collection inherently captures the temporal dependencies and patterns within the data, and 
this temporal dimension holds crucial information for understanding how the underlying process or 
phenomenon evolves. When data are collected from a monitoring environment, this data structure 
emerges naturally, as the measurements are taken at regular intervals. One of the most common 
objectives of system monitoring is to detect anomalies in the system's behavior, and time series 
analysis is a powerful tool for this task. Also, time series analysis is a fundamental tool for forecasting 
future values of time series, which is a key component of many predictive systems. 
  
Time series usually describe the temporal evolution of a single variable; in that case the series is 
known as univariate. Although it is possible to combine several series into one that represents several 
variables, in that case they are considered multivariate series. This approach not only creates a much 
more complex structure, but also can be used to model the temporal interdependency between the 
variables. The behavior of some variables may have a big impact on other variables; for example, the 
temperature of a room will have a great correlation with the temperature of a device located in that 
room. In the case of this project, several variables are monitored, for example, Prometheus will be 
used to collect metric about CPU usage, memory usage, network traffic, etc. All these metrics are 
collected at the same time, so they can be combined into a multivariate time series.  
  
Time series can be represented as a simple sequence of samples but are usually represented as a 
sequence of tuples (t, x), where t is the time at which the sample was taken, and x is the value of the 
sample. With this representation, the information stored in the series is enhanced, as the temporal 
dimension is explicitly represented. This allows to perform operations on the time dimension, for 
example, to calculate the time difference between two samples. In addition, it facilitates the 
identification of missing samples, which is a common problem in time series data. The time difference 
between two samples, which is usually constant, is called the sampling period or, in some cases the 
sampling frequency, calculated as the inverse of the sampling period. 
 
From a mathematical point of view, a time series is a stochastic process, which is a collection of random 
variables indexed by time, and it can be represented as a function of time. The time series can be 
represented as a function of time, 𝑋(𝑡), where 𝑡	is the time index and 𝑋	is a random variable. In practical 
cases, the time series is not a continuous function, but a discrete function, as the samples are taken at 
discrete time intervals. However, most of the time series and continuous function analysis techniques 
can be applied to discrete time series with little or no modification. 
 

3.2.1.1 Applications of Time Series Analysis 
  
Time series analysis is a very broad field, and it has many applications in different domains. In this 
section, some of the most common applications of time series analysis are presented. 
  

• Forecasting: Forecasting is the most common application of time series analysis. The goal of 
forecasting is to predict future values of the time series. The forecasting techniques use the 
information contained in the time series to predict the future values of the time series. 
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• Anomaly detection: The goal of anomaly detection is to detect abnormal behavior in the time 
series. For example, in the case of systems monitoring, it is very important to be able to 
detect unusual function of the system, as it allows one to detect problems in the system 
before they become critical. 

• Clustering: The goal of clustering is to group the time series into different clusters. Each 
cluster contains time series that are similar to each other in some way, usually not known in 
advance. When applied to monitoring, it allows to group different components of the system 
that behave in a similar way. Once these groups are identified, it is possible, for example, to 
detect problems in some components of the system by analyzing the behavior of other 
components in the same group. 

• Visualization: Although visualization is not always considered an application or a final goal, it 
is a very important part of time series analysis. Understanding how a system behaves over 
time is not an easy task, and time series visualization can be a very powerful tool for this.  

• Summarization: The goal of summarization is to condense the information contained in the 
time series into a smaller representation. This is useful when the time series is very large, and 
it is not possible to analyze it in its entirety or when it is necessary to compare several time 
series. 

 

3.2.1.2 Time Series enhancement techniques 
 
Time series are powerful tools for analyzing the temporal evolution of a system, but they are not 
always easy to interpret. The information contained in a time series is not always easy to extract, and 
it is often necessary to apply some enhancement techniques to make the information more 
accessible. In this section, some of the most common enhancement techniques are presented.  
 
Smoothing: In some cases, the time series may contain a lot of noise, which makes it difficult to 
extract the information contained in the series. Or the sampling frequency may be very high, and the 
number of samples can shadow the information contained in the series. In these cases, it is useful to 
apply some smoothing techniques to reduce the noise and make the information more accessible. 
There are many smoothing techniques, but the most common ones are moving average and 
exponential smoothing. The result of applying a smoothing technique is a new time series in which 
high-frequency components have been removed. 
  
Detrending: The trend of a time series refers to the long-term movement or pattern in the data over 
time. It represents the underlying, gradual changes in the data that occur due to various factors such 
as component degradation, demographic changes, etc. The trend is usually not of interest, as it does 
not contain much information about the system behavior. In fact, it is usually considered a source of 
noise because it can hide the information contained in the series. In those cases, it is useful to 
remove the trend from the series. The result of removing the trend is a new time series in which the 
long-term movement has been removed. To remove the trend, it is necessary to estimate the trend 
function and then subtract it from the original series. The trend function can be estimated using 
different techniques; the most common ones are linear regression and moving average. 
  
Seasonal Decomposition: Seasonality in a time series refers to regular and predictable patterns or 
fluctuations in the data that occur at specific intervals of time. These patterns often repeat over a 
short-term period, such as a day, week, month, or a specific season, and are typically associated with 
external factors or recurring events. For example, it is common to observe a weekly seasonality when 
working with systems with users. The behavior of those users is usually different during the week and 
during the weekend. As with the trend, the seasonality is something predictable, that once it is 
identified, it can be removed from the series. In some cases, a time series can have several seasonal 
components; considering again human behavior, it usually presents a weekly seasonality, but also a 
daily seasonality as the lunch time or resting hours are repeated every day. To identify these 
seasonal components, most common techniques involve analyzing the data in the frequency (or 
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spectral) domain to identify those periodic components which contribute to seasonality. The most 
common technique for this purpose is the Fast Fourier Transform (FFT), which can decompose the 
time series into its constituent frequencies. 
  
Time Series Decomposition: The two previous techniques are usually presented together to create a 
set of three functions: one for the trend component, one for the seasonal component and one for the 
residual component. The residual component is the part of the series that is not explained by the 
trend or the seasonal component. This residual component is usually considered the most interesting 
part of the series as it contains the information about the system behavior that is not directly 
explained by the previous data. 
 

3.2.1.3 Combining Time Series Data 
 
In the context of this project, various variables are monitored, for instance, Prometheus will be 
employed to gather metrics on CPU usage, memory usage, network traffic, etc. Each of these metrics 
generates a time series for its respective variable, and they can collectively form a multivariate time 
series. When all the series share the same sampling frequency, the resultant multivariate time series 
is called a regular multivariate time series. However, it is possible that the sampling frequency varies 
for each variable, e.g. some variables being obtained every second and others every minute. In those 
cases, the resulting multivariate time series is called an irregular multivariate time series. To work with 
these irregular series, it is necessary to process the sampling frequency of each variable to create a 
regular multivariate series. 
  
Resampling is the process of altering the sampling frequency of a time series, and it can either 
increase or decrease the sampling frequency. In the aforementioned case, resampling is one of the 
processes used to create a regular multivariate time series. To achieve a target frequency some 
series will need to increase their sampling frequency, whereas other will need to decrease it. 
Increasing the sampling frequency is called upsampling, while decreasing it is called downsampling. 
Downsampling is typically a straightforward process, involving the removal of some samples from the 
series. However, upsampling is a more complex process that involves creating new samples to fill the 
gaps between the original samples. This process of generating new samples is known as interpolation 
and can also be employed to fill missing samples in a time series. 
  
Choosing the target sampling frequency involves considering the trade-off between upsampling and 
downsampling. When upsampling is performed, the new samples are synthetic estimates and may not 
be as accurate as the original samples. Conversely, when downsampling is carried out, some samples 
are removed, resulting in the loss of some information. 
 

3.2.1.4 Other Cleaning and Preprocessing Techniques 
 
Time series analytics can be a very powerful tool for analyzing the behavior of a system, but usually it 
is quite sensitive to noise and other artifacts like missing samples or outliers. In addition, it is not 
always easy to extract the information contained in the series. In some cases, it is necessary to apply 
some preprocessing techniques to make the information more accessible.  
  
Outlier Detection: Outliers are data points that are significantly different from the other data points in 
the series. They are usually caused by measurement errors or sensor malfunctions, but they can also 
be caused by some unusual behavior in the system. It usually appears as high frequency components 
in the series, as isolated samples. 
  
Error Correction Methods: The problems in sensors or acquisition processes can cause errors in the 
data. Some examples of these errors are duplicated or delayed samples. These errors may be difficult 
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to detect, but they can cause problems in the analysis of the series or biased results. Statistical 
analysis or comparison between different sources of data can be used to detect these errors. 
  
Data Normalization: it is a common technique used to scale the data to a fixed range. When 
combining several time series into a multivariate time series, it is usually necessary to normalize the 
data to a fixed range as the different series may contain information in different scales. For example, 
the CPU usage is usually a percentage, while the number of requests per second of a service can be 
an arbitrary high number.   
 
Data Imputation: missing samples in a series can be caused by several factors, like network 
congestion, services failures, server maintenance, etc. Data imputation is the process of filling the 
gaps produced by missing samples. Interpolation or mean imputation (replace the missing values with 
the mean value of the series) are some of the most common techniques, however, the analysis of the 
series can be used to create more accurate estimations based, for example, in the trend or the 
seasonality. 
  
Feature Engineering: The date and time information contained in a time series can be used to extract 
additional information. For example, the day of the week, the hour of the day, the month of the year, 
etc. That kind of features are usually transformed to periodical signals, as they are cyclical in nature. 
For example, the hour of the day can be represented as a signal that repeats every day, period 24. 
This transformation helps to relate the samples belonging to the beginning of the cycle to the ones of 
its end, e.g., samples collected at 23:00 and 00:30. 
 

3.2.2 Dependency Analysis 
 
Dependency analysis is a type of data analytics that aims to study the relationships between 
variables, events, and observations collected from a system. Understanding the relationships among 
this data makes it possible to discover and identify connections between components or processes in 
the actual system being analyzed. These relationships or dependencies may be intentional and result 
from the architecture or design of the system, but as systems grow in complexity, unforeseen internal 
dependencies often emerge. Analyzing these dependencies is useful in various ways. The first utility 
is diagnostic, meaning a reactive approach that helps understand the possible causes of an event or 
the consequences that event has had on other components of the system. Taking this approach a 
step further, dependency analyses can be conducted proactively, leading to fault prediction tools 
that anticipate the effects of an event before it occurs, enabling preventive measures to avoid or at 
least mitigate its impact. 
  
Dependency analysis is a broad field that encompasses many different techniques and approaches. 
In this section, some of the most common techniques are presented. 
 

3.2.2.1 Root Cause Analysis  
 
Root cause analysis (RCA) is a method used to identify the root causes of faults or problems. Some 
event is considered a root cause if its presence or absence directly and specifically results in the 
occurrence of the problem. RCA seeks to identify the point of origin of a problem studying the chain 
of events that lead to the problem. RCA can be applied systematically following a methodology to 
identify and address the fundamental causes of faults or problems. Within this methodology, a 
specific event is deemed a root cause if its presence or absence directly and unequivocally leads to 
the occurrence of the problem at hand. RCA goes beyond addressing surface-level issues by delving 
into the intricate details of the chain of events that culminate in the manifestation of the problem. This 
analytical approach aims to pinpoint the exact origin point of the problem, unravelling the underlying 
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factors and circumstances that contribute to its development. The steps involved in the RCA 
methodology are as follows: 
  

• Problem statement: define and describe the events, failures or situations that will be studied. 
• Data collection: gather all data and events related to create a timeline or chronology. 
• Estimate the impacts: estimate through historical correlations, differentiation, etc. the impact 

or effects of the different events in the subsequent. This step should distinguish causal factors, 
and non-causal factors.  

• Causal graphing: Finally, using the sequences of events from previous step, a subsequence of 
key events that explain the problem should be obtained and converted into a chain event graph. 

 

3.2.2.2 Graphs and Event Representation 
 
Among all the data structures or information formats used in this field, graphs stand out above the 
rest. A graph is a data structure that models information to represent relationships between different 
nodes. These relationships are directly mapped to dependencies, and the nodes can represent 
variables, events, or the components themselves. This abstraction allows this, a priori generic, 
structure to be used in this field to represent information, and even more importantly, enables the use 
of graph-based algorithms for dependency analysis. 
  
Graphs are an abstract data structure and can be employed in multiple ways to represent the same 
information. For example, a system can be modeled by placing its components as nodes and 
representing communication between components as edges between the nodes. Another option 
could be to model the system as a state machine, with edges representing transitions and actions 
taken in the system's components. Despite the mentioned flexibility to represent the same 
information in different ways, there are some graph structures or types that are more commonly used 
than others due to certain properties they possess. The most important ones are briefly described 
below. 
  
Directed Acyclic Graph (DAG): A DAG is a type of graph that consists of nodes connected by 
directed edges, and it does not contain cycles. DAGs are commonly used to represent dependencies 
and relationships in systems where certain actions must occur before others. DAGs can illustrate 
relationships between components or tasks where one must precede another. In this context, nodes 
represent components or tasks, and directed edges indicate dependencies. DAGs are valuable for 
visually mapping out dependencies and ensuring that there are no circular relationships. In the 
context of RCA, a DAG could illustrate the causal relationships among various factors contributing to 
a problem, emphasizing the sequence and hierarchy of events leading to the identified root cause. 
  
Event-Driven Graph: are utilized to model systems where actions or occurrences trigger subsequent 
events. Nodes in this graph represent events, and directed edges signify the cause-and-effect 
relationships between events. This type of graph is useful for understanding the chronological order 
and dependencies of events within a system. The most common application of these graphs is the 
Chain Event Graph, described later in this section. 
  
Time-Based Graph: this type of graph focusses on capturing temporal relationships within a system. 
Nodes represent events or states, and edges denote the temporal order between them, adding a new 
dimension to the data structure. This temporal dimension is usually represented as a property in the 
edges. This type of graph is beneficial for analyzing how the timing of events influences the 
occurrence of problems. 
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3.2.2.3 Chain Event Graphs 
 
Chain Event Graphs area graph graphical model for representing and analyzing causal relationships 
within a system. These graphs are characterized by a sequential arrangement of events, forming a 
linear chain that visually depicts the cause-and-effect dependencies among them. Each node in the 
graph represents a specific event or state, while directed edges signify the chronological order in 
which events unfold. These nodes in the chains may have several predecessor and descendants, but 
in most cases the chains converge in a single one that contains the event of interest for the analysis. 
In many cases, as this aggrupation of chains do not create cycles, they can be modelled as a DAG.  
  
Chain Event Graphs are valuable tools for dependency analysis, allowing to identify critical 
dependencies and understand the intricate relationships between events. By visually examining the 
connections between events, decision-makers can gain insights into the impact of changes or 
interventions on the overall sequence of events. This type of visualization is usually both a result and 
a tool in the RCA processes. 
 

3.2.2.4 Call Graph Analysis 
 
Similar to the representation of events in graphs, interactions between different components can also 
be modelled in a graph. These graphs are commonly known as call graphs, and they are used to 
represent the interactions between the different components of a system. In this context, nodes 
represent different components, services, or subsystems, while edges represent the interactions 
between them. These interactions typically represent method invocations, data transmission, and 
various forms of communication. In most cases, these graphs are time-based graphs, as this 
modelling approach enables the representation of the chronological sequence of interactions 
between the different components. 
 

3.2.3 Network flow statistics processing 
 
The ACES network switches will compute fine-grained, flow-based metrics, per packet, directly in the 
data plane. As explained in Deliverable 2.1, when deployed in an EMDC edge at Terabit traffic speeds, 
conventional server-based solutions can only monitor a small subset of traffic for its downstream 
applications, as they are limited to a few Gbps packet processing at best. Network traffic needs thus 
to be (heavily) sampled to meet the capabilities of the monitoring server. Observing and computing 
in-network statistics over all network traffic (see the details on network metrics in Table 7) in the 
network switch data plane makes the ACES monitor records richer than the sampling-based records 
generated by traditional systems, enabling new and improved network monitoring applications. 
 
We can divide the process of moving from network traffic data to knowledge into three parts: packet 
processing, statistics computation, and statistics analysis. Packet processing is the task at which a 
packet switch excels. An incoming packet is parsed according to the specific network protocol (e.g., 
extract the IP destination header). The parser extracts fields from the packet headers, making them 
available for subsequent processing. Next, the extracted packet header fields are used as keys for 
the switch lookup tables (e.g., the forwarding table). Finally, once the appropriate entry is identified in 
the tables, the switch performs an action (e.g., forwarding the packet to a specific port). 
 
In ACES, we will develop specialized actions to extract telemetry data. We can consider these data 
along two axes:    
    
Flow type. The ACES network switch monitor will compute metrics for multiple flow keys. Currently, 
we are considering four types of keys: [MAC src, IP src], [IP src], [IP src, IP dst], and [5-tuple].    
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Flow atoms. The ACES switch stores telemetry data as “flow atoms”. These are specialized counters 
for a specific flow key. Currently, we consider three flow atoms: number of packets, number of bytes, 
and squared number of bytes.  
 
These atoms are maintained in the switches’ stateful memory and are used to compute statistics, the 
second step in moving from network data to knowledge. For generality, the ACES switch will compute 
a diverse set of statistics of two types: unidirectional (1D), tracking outbound traffic, and bidirectional 
(2D), considering both inbound and outbound traffic. The 1D flow statistics include weight, mean, 
standard deviation, and time intervals. The 2D statistics include magnitude, radius, approximate 
covariance, and correlation coefficient.   
   
An important observation is that computing these statistics can be performed in a streaming fashion, 
per-packet – much aligned with the computational model of a switch pipeline. Indeed, the pipeline 
stages of a switch allow for performing basic arithmetic and logical operations per packet, storing the 
results in stateful memory when needed. In ACES, we instrument the switch pipeline to compute the 
statistical features of network flows. However, to maintain Terabit throughputs, the computational 
model of a switch is limited, and many calculations resort to approximations. There is, therefore, a 
trade-off between the ability to compute statistics over all packets and the potential loss of precision 
of approximated estimates. 
 
The final step for knowledge creation is statistics analysis. In ACES, we will employ AI/ML techniques 
to extract knowledge from the flow statistics. For example, the anomaly-based intrusion detection 
systems developed in ACES will use network flow statistics computed in the switch as input features 
to an ML processing pipeline. We will investigate autoencoders, specifically, as these models can be 
trained to mimic (reconstruct) network traffic patterns [10]. The discrepancy between this input and 
the reconstructed output can serve as a measure of anomaly. 
 

3.2.4 Feature extraction and modelling techniques for 
security and privacy  
 
As presented in D2.1, ACES offers a comprehensive security solution to safeguard its services and 
data from potential cyberattacks. This solution involves various techniques to extract features, model 
system behaviours, and detect cyberattacks, as summarized below. 
 

3.2.4.1 Anomaly detection in EMDCs 
 
For container and node security, multiple metrics discussed in Section 2.3 - such as system calls, 
CPU, GPU, memory, storage, and network metrics - can be used to profile the normal behavior of the 
system and detect anomalies that may be caused by cyberattacks. These metrics can be collected 
and processed as time series data, with time series analysis typically applied for anomaly detection or 
clustering (cf., Section 3.2.1.1). Beyond time series or statistical analysis, advanced ML models like 
Decision Trees [11], K-NN, Random Forest, and AutoEncoders  [12][13] are utilized for dynamic 
anomaly detection. These ML-based techniques learn and compare the patterns of system calls 
triggered and the CPU, memory, and network usage generated by benign and malicious workloads. 
For instance, time series data of system calls can be transformed into bags and sequences of system 
calls before using supervised anomaly detection methods to identify potential attacks  [14]. 
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3.2.4.2. Security for ML 
 
The ACES agents will be supported by several types of ML models based on the training data sources 
we have described in this document. For ML security, there are various techniques to analyze ML 
model parameters (weights and biases) to detect poisoned models. Most techniques convert the 
tensors of model parameters into vectors and process them as time series data. For example, 
Fereidooni et al. transform model parameter vectors into the frequency domain and use frequency 
analysis techniques to identify poisoned models [16]. Additionally, several techniques to discern 
differences between poisoned and benign models include Euclidean and cosine distance measures 
[15], data distribution analysis [17], and frequency domain analysis. Typical ML algorithms used for 
clustering and detecting poisoned models are, for instance, K-Means [18] and HDBSCAN [15][17]. 
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4. ACES Knowledge Model  
This section presents the knowledge model defined in ACES to characterize all the context 
information relevant for the ACES agents to reach decisions on what actions should be started by the 
system. The section provides both the description of the main parts of the knowledge model, as well 
as the relationship of this model with the agents that will make use of the information. 
 
 

4.1 Knowledge Model description 
 
The model aims to capture a comprehensive set of information that will be instrumental as features in 
these machine learning models, enhancing the decision-making and predictive capabilities of the 
ACES agents. 
  
Knowledge will be structured within a knowledge graph, allowing for complex relationships and 
dependencies to be represented and queried efficiently. To facilitate interoperability and extensibility, 
our abstractions will adhere to the NGSI-LD standard. This alignment not only facilitates the 
integration of ACES elements with other European Data Spaces but also enhances the scalability and 
adaptability of our approach.   
 
These abstractions are being defined based on the following data sources that have been discussed 
in the previous sections. 
  
The information model is built on the foundation of the ACES context and requirements, which have 
been meticulously documented in Work Package 2 (WP2), with specific emphasis on Deliverable 2.1 
concerning the ACES architecture. This architecture defines the overarching structure and guiding 
principles for the creation of management agents capable of overseeing complex edge computing 
environments. 
  
We incorporate insights taken from industry-leading datasets as the ones discussed in Section 3.1.4. 
These datasets show real configurations and scenarios, as well as highlight key characteristics from 
these environments that must be captured for an effective management of ACES environments.  
  
Our model also takes into account metadata derived from prevalent microservice configurations and 
complex deployments, including those found in widely used Docker and Helm repositories. This data 
is critical for understanding the types of dependencies, relationships, and constraints that the ACES 
agents must manage. Such insights are imperative for the autopoietic functions of the agents, 
enabling them to adapt and evolve within their operational ecosystem. 
  
The model also integrates runtime information from the supply-side, such as the runtime state of 
services, and the information captured by monitoring metrics, as detailed in Section 2. These metrics 
provide real-time insights into the performance and state of the micro data centre and the running 
services, which will provide a substantial percentage of the features that ACES agents employ for 
reasoning. 
 

4.1.1  Modelling Challenges 
 
The ACES platform targets applications adapted to the specific capabilities of the edge-cloud 
continuum and proposes an innovative hardware platform to run its functionality (the EMDC). We 
briefly discuss some of the unique characteristics that we have considered.  



39 
 

 

Autopoietic Cognitive Edge-cloud Services 

D3.1 – ACES Data and Knowledge Model  Page 39 of 49 © 2023 

 

4.1.1.1  EMDC Resource Pool 
 
Additionally to the nodes in an EMDC, we consider a pool of resources that presents an innovation to 
the current definitions of the edge continuum. This means that besides the processing capabilities in 
a node (that is a constitution of multiple resources), single resources can be requested for pod 
processing. This pool of resources is part of the EMDC and can be consulted by the edge(-cloud) 
management as requested. Such a pool mainly prevents resource limits, increased latencies, and 
stability of the performance of other pods, as their assigned resources are not tapped. Currently, the 
Compute Express Link (CXL)30 is being implemented in CPUs (Intel, AMD), in memory and storage 
(Samsung) and the PCIe switches are expected in 2025. Besides the hardware development, the 
biggest challenge currently is related to orchestration and how the network infrastructure can be 
incorporated into these pools of resources. 
 

4.1.1.2 Application Types 
 
For the different services, we can identify three application types that come with diverse 
requirements in their response time. 
 

• The long-running applications (LRAs) instantiate long-standing pods to enable iterative 
computations in memory or unceasing request-response. LRAs include processing 
frameworks (e.g., Apache Spark31, Flink32), latency-sensitive database applications (e.g., 
HBase33 and MongoDB34 ), and data-intensive in-memory computing frameworks (e.g., 
TensorFlow35). 

• Batch processing is typically used when you have a large amount of data that needs to be 
processed all at once, and when the results of that processing can be stored and used later. 
Data is typically processed on a schedule or at regular intervals. There are two types of batch 
processing: Regular returning requests, and opportunistic requests with little to no SLA 
(Service Level Agreement).   

• Stream processing also deals with large volumes of data, but the data needs to be processed 
in real-time (e.g. Apache Storm36, Kafka streams37). 

 
Future workloads will become even more complex with LRAs, batches, and stream processes being 
interconnected. Therefore, it will be challenging to categorize an application and tune its agents 
accordingly. 
 

4.1.1.3 Relationships among Pods 
 
Applications will be deployed in the runtime platform as pods. These pods can have several relations 
with each other. There can be different needs, e.g., that they need to be processed in parallel or that 
they depend on each other. Additionally, if one pod is too slow, the current system creates more pods 
to reach the given response times of the specific services. Currently, these relationships are not used 

 
30 https://www.computeexpresslink.org/ 
31 https://spark.apache.org/ 
32 https://flink.apache.org/ 
33 https://hbase.apache.org/ 
34 https://www.mongodb.com/ 
35 https://www.tensorflow.org/ 
36 https://storm.apache.org/ 
37 https://kafka.apache.org 
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in the scheduler and orchestration optimization. For example, placing interacting services closer 
together can significantly enhance their performance) if there are multiple services with 
microservices that frequently interact, it is advisable to locate the microservices of one service within 
the same region to improve performance. For pods that are heavily dependent on a database, it is 
best to place them near the database to reduce latency and improve overall performance. 
 

4.1.2  Base concepts 
 
Our knowledge model is built on top of the NGSI-LD framework, utilizing its foundational 
abstractions—Entity, Relationship, Property, and Value—to construct a comprehensive knowledge 
graph that encapsulates the multifaceted nature of service orchestration and infrastructure 
management. 
 
The knowledge graph is also captured using the JSON-LD format, ensuring a standardized and 
interoperable representation of information. 
  
Entities within our model serve as the primary abstraction, characterizing the different aspects of 
supply and demand. They encapsulate detailed descriptions of the runtime services executing at the 
ACES platform, including the logical definition of their constituent components such as pods, replicas, 
and the various other elements that necessitate accommodation within the infrastructure. 
 
Parallel to the service descriptions, our model delineates the supply aspect, providing a structured 
description of the environment. This encompasses the EMDC, detailing the available hardware 
resources—CPU, memory, storage, and networking components. Both aggregated and disaggregated 
resources are represented, reflecting the actual state of the infrastructure. The runtime orchestration 
platform, Kubernetes, is depicted through entities that describe the managing nodes and the 
deployed pods. 
 
Monitoring information forms the third pillar of our model, encompassing metrics that are intimately 
related to the supply elements. These metrics capture the performance and utilization of hardware 
and software resources, providing insights into the infrastructure's operational status. Events that 
record the interactions and invocations of the runtime-deployed microservices enrich the model, 
offering a dynamic perspective of system behavior and service consumption. 
 
These three models are directly related. The services described in the supply model will be linked to 
their real instantiations in nodes from the demand model, with individual instances of the execution 
services being linkable to all their requirements and predefined constraints. Finally, the runtime model 
will complete information about every element of the supply model, providing historical and up to 
date views of their state.  
 

4.1.3 Supply model 
 
The provided diagram shows the key entities of the supply model and their interrelationships, which 
capture the ACES services runtime execution platform. 
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Figure 2 ACES sample supply model 

 
The top-most level element is the EMDC (Enterprise Micro Data Centers), which serves as the 
hosting ground for the Kubernetes clusters. The EMDC represents the hardware platform that 
contains multiple entities representing the hardware that will be used to deploy and run services. As 
the ACES architecture described In D2.1 describes, there can be multiple EMDCs that form the ACES 
execution infrastructure. Key properties of an EMDC might include: 

• id: A unique identifier, such as "emdc001". 
• location: The geographical or network location, for instance, "DataCenterNorth". 

 
The EMDC hosts multiple K8_cluster entities, each representing a Kubernetes cluster. The hosts 
relationship makes these explicit in the model. A Kubernetes cluster manages a set of node machines 
for running containerized applications. Potential properties for a K8_cluster include: 

• clusterId: A unique identifier, like "cluster-01". 
• nodeCount: The number of nodes in the cluster, e.g. "15". 

 
A node is a worker machine in Kubernetes that can run Pods for ACES services. It contains the 
services necessary to run Pods and is managed by the master components. Examples of node 
properties are: 

• nodeId: The unique identifier, such as "node-1234". 
• status: Current status, e.g. "Available" or "Unavailable". 

 
ACES services, deployed as pods will require access and consumption of multiple types of resources: 
cpu, gpu, memory, and storage. Each type of resources is modelled as a separate entity. Unlike 
traditional hardware architectures, the ACES EMDC will provide a mesh of disaggregated resources, 
which is represented in our modeled with the contains type of relationship being defined not only 
from a node to one of these entities, as it would happen in a classical system, but also by the 
possibility of these links occuring directly from e.g a gpu to the EMDC. Each of these entities will have 
its set of unique potential properties, although we provide some examples among them: 

• cores: The number of cores available, e.g., "8 cores" for CPU. 
• model: The model of the processor, such as "Intel Xeon E5-2670" for CPU or "NVIDIA 

Tesla V100" for GPU. 
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These entities represent every aspect of the demand, including their topology, and current state. This 
model is completed with the key entity that maps between supply and demand, the pod (we use the 
Kubernetes term in this case, as pods are the smallest deployable units of computing that can be 
created and managed in Kubernetes). Each pod runs a single instance of a given service. A pod runs 
on a k8_cluster, as shown with the deployed_at type of link. For a pod, relevant properties include: 

• podId: A unique identifier inside the cluster, such as "pod-5678". 
• ServiceId: a reference to the service definition in the supply model where the full 

information about the service can be extracted.  
 
Consumes is key to capture the resource usage for each pod on the. This edge is annotated with 
properties that qualify the amount of that resource currently being allocated to that node, for 
instance, {"cpu": "250m", "memory": "512Mi"}. 
 
This structured supply model provides a clear and comprehensive view of the available resources and 
their utilization, which is essential for maintaining the desired performance and efficiency of the ACES 
platform's services. 
 

4.1.4  Demand model 
 
Kubernetes applications are structured as services containing pods, with explicit dependencies. Helm 
charts build upon these elements and provide a higher level services view, focusing on aspects like 
dependencies and compositions. The ACES demand model needs to support multiple types of 
applications that will be deployed under this model: Long-Running Applications (LRAs), batch 
processing applications, and stream processing applications. Each type presents unique aspects in 
terms of operation: some are designed to execute a task and then terminate, while others are 
intended for continuous operation. These applications are also defined by their performance 
objectives, such as completion times and deadlines for batch processes, or service times and 
application latency for continuous operations. 
 
In defining the requirements for these applications, we consider additional goals and constraints that 
are specific to the services and charts. These requirements form the basis of the demand model 
(Figure 3).  This approach ensures that each application's needs are accurately captured and 
addressed in the Kubernetes environment. 
 
The demand model is crafted to encapsulate the objectives and constraints integral to the ACES 
platform's functionality, performance, and operational correctness. These goals serve as inputs for 
reasoning agents, ensuring the platform's autopoietic behavior aligns seamlessly with the intended 
outcomes. 
 
The core entity of the demand is the service. This entity represents a discrete unit of functionality—
be it a microservice, Function-as-a-Service (FaaS), or Database-as-a-Service (DBaaS). It is important 
to distinguish between this general notion of a service and a Kubernetes service, which, although 
similar, entails additional specificities related to deployment and networking. Potential properties for a 
service entity might include: 

• id: A unique identifier for the service, such as "energy auction service". 
• version: The current version of the service, for example, "1.4.3". 
• provider: The entity providing the service, e.g "IPTO". 
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Figure 3 ACES Sample demand model 

 
Services are not standalone; they frequently amalgamate into higher-level constructs for more 
complex functionality. We refer to these assemblies as charts, resonating with the Helm terminology, 
the prevalent tool for defining and deploying such groupings. A chart encapsulates a collection of 
services, managing their deployment as a coherent unit. Relationships between charts, often 
encapsulating composition and dependencies, are represented as edges in our model, with the type 
depends. Chart entity properties may include: 

• id: A unique identifier for the chart, such as "". 
• version: The release version of the chart, for instance, "2.4.0". 
• provider: The entity providing the whole chart, will be the same of its services. 

 
Services within the supply model are constrained by definitive requirements. These articulate the 
resource commitments necessary for a service's operation, whether through complete dedication or 
reserved capacities. Properties for a requirement entity could encompass: 

• resourceType: The kind of resource required, like "CPU" or "Memory". 
• quantity: The amount of the resource needed, for example, "2048MiB" for memory. 
• reservation: A boolean indicating whether the resource is exclusively reserved, e.g.true. 

 
Lastly, the model integrates SLO (Service Level Objectives) entities, which express the behavioral 
goals of services during execution. These SLOs detail the non-functional aspects, such as 
performance thresholds or reliability targets, that the services are expected to uphold. Properties for 
an SLO entity might include: 

• metric: The performance metric it pertains to, such as "latency". 
• target: The desired threshold for the metric, possibly "100ms". 
• reliability: A measure of uptime or error rate, for example, "99.9%". 

 
Together, these entities and their interconnections construct a demand model that guides the 
reasoning agents in orchestrating a dynamic, responsive, and efficient system operation. 
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4.1.5  Runtime model 
 
The runtime model links the supply model elements that characterize the ACES platform resources, 
with the demand model describing the functionality that needs to be deployed. In order to ensure that 
everything works according to the set requirements, it is necessary for the knowledge model to be 
able to capture at each point in time what is the exact state for every supply model. This way, ACES 
reasoning agents will have the ability to explore the past and present of the environment and take 
informed decisions. 
 

 
Figure 4 ACES sample runtime model 

 
 
The runtime model is composed of two entities: metrics and events. Metrics are time series that are 
associated to a single element of the supply model. Metrics have a name, and each of them a 
timestamp of the obtained measurement time. This way, the whole set of metrics constitutes a time 
series. 
 
Events are timed occurrences of interactions on the runtime elements, in particular the deployed 
pods that instantiate demand services. Events also have a timestamp, and they might originate from 
another element of the runtime model (e.g. from another pod, constituting a service call), or from 
some external element such as a client. These are individual entries, but agents can process them 
into more aggregate metrics to aid in the decisions, such as workload aggregated statistics. 
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4.2  ACES agent types  
 
The knowledge base of ACES will be used by reasoning entities that we refer to as agents. In this 
subsection we provide a short overview of the main characteristics of a system for decision making 
based on agents using the Agent-Based Modelling (ABM) approach. The information presented here 
is complemented with Section 4 of D4.2, where we present specific agents and algorithms to handle 
workload management problems in ACES. 
 
In ABM, a swarm consists of swarm members that can be modelled as agents. They follow local rules, 
interact with the environment, communicate with other agents, and react on local information [20]. 
  
Wilensky and Rand [19] give the following guidelines when to use ABM: 

• Medium number of agents: several dozen up to about 100000 agents. In our use case, we 
model up to several thousand agents, typically pods and resources. 

• Heterogeneity: in ABM, agents can be as heterogeneous as necessary. Thus, in ABM, we can 
model different pods and resource types as agents. 

• Local and complex interactions: as used in swarm intelligence can be depicted in ABM. 
• Rich environments with agent-like local rules: This can be used to, e.g., model complex 

node queue manipulations in our case. 
• Time: ABM is a model of process that fits to our job-shop scheduling problem. 
• Adaptation: almost no other method can model adaptivity of individual entities well. In ABM, 

agents' actions and decisions depend on past actions and current information, i.e., agents can 
learn. This fits the swarm model very well. 

 
When shaping the edge continuum to an agent-based system, we analyze a group of possible swarm 
agents and their attributes. In this context, we need to determine the eligibility of an entity to serve as 
a member of the EMDC swarm [21]. The swarm can exhibit homogeneity (with all agents being of the 
same kind, like numerous pods) or heterogeneity (comprising agents of various types, such as pods 
and resources). For an entity to qualify as a swarm member, it should possess the capacity to 
effectively function within a swarm. This entails the presence of a significant number of other swarm 
members (for instance, a single instance of an FPGA, existing in isolation, would not make a suitable 
swarm member). Additionally, the entity should exhibit an appropriate degree of abstraction to 
facilitate modelling, possess the capability to sense dynamic information from the immediate 
environment, respond to information originating from the local vicinity (such as making decisions), 
and be logically coherent and comprehensible, fostering trust in the proposed solution [20]. 
 
Our agent-based approach introduces two distinct types of swarm agents: demand swarm agents 
and supply swarm agents. These agents collaborate within an EMDC environment, orchestrating 
processes such as pod placement, storage management, and caching optimization. The model for the 
problem consists of an edge continuum with resources, queues, pods, and processes (following 
subsections are adapted inputs from Schranz et al. [22]). 
 

4.2.1 Demand Swarm Agents 
An application is split to a set of services S, that are represented as a set of related pods 𝑃! =
{𝑝",  𝑝#,   … } with s as the specific service. Each service s is defined by a compilation of resources 𝑅! 
which prescribes the processing steps necessary to compute the individual pods. The pod 𝑝$! can 
choose which of the suitable nodes 𝑁%& to use for each necessary process step 𝑃'. 
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4.2.2 Supply Swarm Agents 
The EMDC E contains several sets of nodes or nodes, consisting of different types of resources 𝑁' =
{𝑁"' ,  𝑁#' ,   …  }, where r is/are the resource type(s). A node with different resources presents a typical 
EMDC node, whereas a node with a single resource presents, e.g., a CPU that is part of a pool of 
resources. In the course of this project, we consider multiple types of resources along with their 
respective capacities: CPU, FPGA, RAM, and NVMe. Each resource 𝑁%' has a queue 𝑄%'. 
 

4.2.3 Orchestration of Swarm Agents with ML 
 
One key element of the overarching ACES architecture revolves around the orchestration of these 
demand/supply agents. This orchestration process will be executed through swarm algorithms. 
 
Each individual swarm agent will adhere to specific policies and conform to a general behavior 
pattern established by the chosen swarm algorithm. However, it is worth noting that every swarm 
algorithm relies on hyperparameters that fine-tune various aspects of the resulting coalition's 
behavior [23]. More specifically: 1) hormone algorithms are contingent on hyperparameters that 
govern i) the quantity of generated hormones, ii) the rate of hormone evaporation, iii) the mobility of 
hormones, and iv) the intensity of hormone attraction; similarly, 2) ant algorithms involve 
hyperparameters related to i) the influence of hormones, ii) the rate of updates, and iii) the 
evaporation rate. Hyperparameters are typically chosen using trial-and-error methods, random/grid 
searches, and/or heuristics [24]. Once these values are established, it is uncommon to modify them 
during the execution of the swarm algorithm. 
 
In a novel approach, ACES selects hyperparameters using autonomous ML techniques which also 
allows for potential real-time updates, enabling the coalition's behavior to adapt to significant 
environmental changes. More specifically, Bayesian learning [25] and Reinforcement Learning [26] 
tools will be employed and tested for this purpose. These two are experiment-driven approaches that 
efficiently explore the hyperparameter space by monitoring the system's KPIs. They offer efficiency 
as i) they are automated and ii) yield satisfactory results with a limited number of iterations [27]. 
Additionally, once a suitable set of hyperparameters is identified, these ML tools can swiftly self-
adapt to environmental changes by tracking KPIs and using previous hyperparameter values as a 
warm-up starting point. 
 
Moreover, each individual agent will be required to conduct basic forecasting operations using 
regularized linear regression, applied to the monitored metrics. To enable autopoietic behavior, the 
regularization hyperparameter will be self-adjusted using a novel bilevel optimization approach. When 
feasible, and subject to hardware constraints, an innovative Neural Network architecture named 
'split-boost' [28] will also be employed for the same purpose of having autonomous tuning of 
hyperparameters. 
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5. Conclusion 
This document has presented the foundations of the ACES Knowledge Model, which constitutes the 
backbone for realizing the autopoietic capabilities of the ACES platform. The pursuit of an autopoietic 
system, capable of self-management and continuous adaptation, requires the agent components 
developed in WP4 to be aware of every relevant characteristic of the static and runtime state of the 
ACES platform, in order to adequately decide on the required course of action. The model's design is 
a response to the increasing need for sophisticated orchestration of services in dynamic edge-cloud 
environments, which are characterized by their heterogeneous and decentralized nature. 
  
In the transition "From Data to Knowledge," this deliverable has articulated the transformative 
process through which raw data is elevated to actionable intelligence within the ACES platform. It 
presents the blueprint for the architecture that will be involved directly in data collection and 
telemetry, to be complemented through processing and analytics, to knowledge formation and 
operational wisdom. This process is facilitated by leveraging advanced data aggregation techniques, 
robust analytics, and machine learning algorithms that convert the vast streams of telemetry and 
metrics into a coherent understanding of the system's state and performance. 
  
The Knowledge Model is built upon the NGSI-LD framework. Through the JSON-LD format, we have 
ensured that the information model is not only standardized but also interoperable across different 
systems and platforms. The model effectively captures the core aspects of supply and demand within 
the ACES infrastructure. On the supply side, it details the computational resources, such as CPUs, 
GPUs, and memory, as well as the network components that constitute the EMDCs. For the demand 
side, it encapsulates the service requirements, operational SLOs, and deployment strategies, which 
are crucial for service fulfilment and performance optimization. 
  
The ACES Knowledge Model is complemented with the core agent concepts that underpin its 
autopoietic behavior. The deliverable has introduced distinct swarm agents—both demand and 
supply—that operate within a dynamic EMDC environment. These agents will be pivotal to deciding 
and orchestrating complex actions like pod placement, network optimization, and load balance, 
whose work will be developed in WP4. 
  
Throughout the document, we have explored the relationships between entities, such as the 
deployment of services on Kubernetes clusters and the utilization of computational resources by 
pods. These relationships are integral to the model, as they reflect the real-time state and topology of 
the system and enable the reasoning agents to perform effective orchestration and management 
tasks. 
  
In conclusion, the work reported in this deliverable represents a significant step towards realizing a 
self-sustaining system that is equipped to handle the complexities of modern edge-cloud services. 
The model is expected to evolve as the platform expands and as new challenges and requirements 
emerge. Future work in WP 3 will build upon this milestone. T3.1 will focus on refining the model, 
integrating it with the AI/ML agents to realize the vision of the ACES ecosystem. On the other hand 
T3.2 will develop the full telemetry infrastructure, managing the captured knowledge, 
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