

Autopoietic Cognitive Edge-cloud
Services

Deliverable 2.1
ACES Architecture Definition
Grant Agreement Number: 101093126

Autopoietic
Cognitive Edge-cloud Services

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition Page 2 of 75 © 2023-
2022

Autopoietic Cognitive Edge-cloud Services

Project full title Autopoietic Cognitive Edge-cloud Services

Call identifier HORIZON-CL4-2022-DATA-01

Type of action RIA

Start date 01/01/2023

End date 31/12/2025

Grant agreement no 101093126

Funding of associated partners

The Swiss associated partners of the ACES project were funded by the Swiss State Secretariat for
Education, Research and Innovation (SERI).

D2.1 – ACES Architecture Definition

Author(s)

Yiannis Georgiou, Fred Buining, Rui Min, Melanie Schranz, Fernando
Ramos, Cláudio Correia, Thien Duc Nguyen, Félix Cuadrado, Loris

Cannelli, Theodoros Grigorakakis, Nikolaos Kanakaris, Timotej Gale,
Melanija Vezocnik, Nabil Abdennadher

Editor Yiannis Georgiou

Participating partners HIRO, LAKESIDE, INESC ID, TUDa, UPM, SUPSI, IPTO, UL, MARTEL and
SISXQ

Version 1.0

Status Completed

Deliverable date M12

Dissemination Level PU - Public

Official date 31 December 2023

Actual date 29 December 2023

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 3 of 75 © 2023

Executive Summary

The ACES project aims to develop a highly decentralised autopoietic and cognitive framework for
edge-cloud computing built around AI/ML and swarm intelligence. This deliverable outlines the ACES
architecture and its key components.

The document starts by presenting its motivating use cases, elucidating how ACES supports its edge
computing scenarios. The use-case requirements delve into the nature of data and knowledge, its
decentralised storage, networking, scalability, and security requirements, providing a comprehensive
understanding of the challenges ACES aims to address.

An in-depth exploration of the ACES architecture follows, presented from different angles: functional,
component, tools, and hardware. This architectural overview highlights the key features and
innovations of the project, offering a high-level view of how ACES can reshape edge computing by
integrating cutting-edge technologies and concepts.

The subsequent chapters delve into the core aspects of the project, covering resource management,
data management, orchestration, networking, monitoring, cognition, and security. Each section
provides insights into these domains' background, design requirements, and innovations, showcasing
ACES' commitment to addressing some fundamental challenges in the edge-cloud continuum
context.

Finally, the deliverable explores the integration design of ACES components, interfaces, and
interactions to provide a holistic view of the framework.

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 4 of 75 © 2023

Disclaimer

This document contains material, which is the copyright of certain ACES contractors, and may not be
reproduced or copied without permission. All ACES consortium partners have agreed to the full
publication of this document if not declared “Confidential”. The commercial use of any information
contained in this document may require a licence from the proprietor of that information. The
reproduction of this document or of parts of it requires an agreement with the proprietor of that
information, according to the provisions of the Grant Agreement and the Consortium Agreement
version 3 – 29 November 2022. The information, documentation and figures available in this deliverable
are written by the Autopoiesis Cognitive Edge-cloud Services (ACES) project’s consortium under EC
grant agreement 101093126 and do not necessarily reflect the views of the European Commission. The
European Commission is not liable for any use that may be made of the information contained herein.

The ACES consortium consists of the following partners:

No PARTNER ORGANISATION NAME ABBREVIATION COUNTRY

1
INSTITUTO DE ENGENHARIA DE SISTEMAS E

COMPUTADORES, INVESTIGACAO E
DESENVOLVIMENTO EM LISBOA

INESC ID PT

2 HIRO MICRODATACENTERS B.V HIRO NL

3 TECHNISCHE UNIVERSITAT DARMSTADT TUD DE

4 LAKESIDE LABS GMBH LAKE AT

5 UNIVERZA V LJUBLJANI UL SI

6 UNIVERSIDAD POLITECNICA DE MADRID UPM ES

7 MARTEL GMBH MAR CH

8 SCUOLA UNIVERSITARIA PROFESSIONALE DELLA
SVIZZERA ITALIANA IDSIA CH

9 INDIPENDENT POWER TRANSMISSION OPERATOR SA IPTO EL

10 DATAPOWER SRL DP IT

11 SIXSQ SA SIXSQ CH

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 5 of 75 © 2023

Document Revision History

DATE VERSION DESCRIPTION CONTRIBUTIONS

08/10/2023 0.1 Table of contents Rui Min (HIRO)

10/10/2023 0.11

Some changes to chapter
structure (1 new chapter

added) and first proposal for
ownership

Fernando Ramos (INESC)

10/10/2023

0.12

Added requirements for the use
cases

Theodoros Grigorakakis
 (IPTO)

10/11/2023 0.8 Added drafts for architecture
diagrams Yiannis Georgiou (HIRO)

12/11/2023 0.9 Updates in all sections All partners

8/12/2023 0.95 Initial draft ready for review Yiannis Georgiou (HIRO)

15/12/2023 0.98 Corrections All partners

21/12/2023 0.99 Final version Yiannis Georgiou (HIRO)

29/12/2023 1.0 Version after final review Fernando Ramos (INESC)

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 6 of 75 © 2023

Authors

AUTHOR PARTNER

Yiannis Georgiou, Rui Min, Fred Buining HIRO

Melanie Schranz LAKE

Fernando Ramos, Cláudio Correia INESC ID

Thien Duc Nguyen TUDa

Félix Cuadrado UPM

Loris Cannelli SUPSI

Theodoros Grigorakakis, Nikolaos Kanakaris IPTO

Rui Min, Yiannis Georgiou HIRO

Timotej Gale, Melanija Vezocnik UL

Nabil Abdennadher SixSq

Reviewers

NAME ORGANISATION

Loris Cannelli IDSIA

Thien Duc Nguyen TUDa

Fernando Ramos INESC-ID

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 7 of 75 © 2023

List of terms and abbreviations

ABBREVIATION DESCRIPTION

ACES Autopoiesis Cognitive Edge-cloud Services

AI Artificial Intelligence

ML Machine Learning

EMDC Edge MicroDataCenter

SI Swarm Intelligence

SDN Software-defined Networking

QoS Quality of Service

FL Federated Learning

IaaS Infrastructure as a Service

PaaS Platform as a Service

MEC Mobile Edge Computing

TSO Transmission System Operator

UC Use Case

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 8 of 75 © 2023

Table of contents

1 Introduction .. 11

1.1 Objectives of the deliverable ... 11

1.2 Structure of the document .. 11

2 Use-case requirements and related service design ... 13

2.1 Use-case descriptions .. 13

2.2 How ACES supports the use cases .. 14

2.3 Use-case requirements .. 15

3 Overview architecture ... 18

3.1 ACES concepts and background .. 18

3.2 High-level view of the architecture .. 20
3.2.1 Functional architecture .. 20
3.2.2 Components-based architecture ... 21
3.2.3 Tools-based architecture ... 22
3.2.4 EMDC and hardware architecture ... 24
3.2.5 ACES application structure ... 24

3.3 Overview of features and innovations ... 26

4 Resource management .. 30

4.1 Background and principal concepts .. 30
4.1.1 Runtime .. 31
4.1.2 Storage ... 31
4.1.3 Networking .. 31
4.1.4 Linux OS ... 32

4.2 Resource selection and workload scheduling ... 32

4.3 High availability ... 32

4.4 Scalability and performance ... 33

4.5 Multi-Cluster control and scheduling optimizations ... 33

5 Data management .. 35

5.1 Managed data .. 35

5.2 Design requirements .. 35
5.2.1 Nature of data .. 35
5.2.2 Decentralized storage solution .. 35
5.2.3 Data consistency, partition, and synchronization .. 36
5.2.4 Scalability and performance .. 36
5.2.5 Availability and fault tolerance .. 36
5.2.6 Data security and governance ... 36

5.3 Relationship with other ACES elements .. 36

5.4 Candidate tools .. 37

6 Orchestration .. 39

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 9 of 75 © 2023

6.1 Background .. 39

6.2 Multi-Cluster orchestration .. 41

6.3 Inter-Cluster orchestration ... 41

6.4 Innovations through swarm intelligence .. 42

7 Networking ... 43

7.1 Design requirements .. 43

7.2 Network architecture overview .. 44

7.3 Control plane ... 44

7.3 Data plane ... 45

8 Monitoring and observability .. 46

8.1 Monitoring and observability in modern systems ... 46

8.2 Requirements .. 49

8.3 Monitoring and observability architecture ... 50
8.3.1 Federation and multi-cluster monitoring ... 52
8.3.2 Relationship with other ACES components ... 52

8.4 Monitoring and telemetry data .. 53

8.5 Data acquisition methods .. 53

8.6 Monitoring and observability of asset runtime ... 54

8.7 Fine-grained monitoring in network switches .. 55

8.8 Periodic and event-driven monitoring .. 56

9 Cognitive Framework .. 57

9.1 Autopoiesis and predictive analytics .. 57

9.2 ML models for the Edge ... 58

9.3 Edge Computing for ML .. 58

9.4 Combining Swarm Algorithms with AI/ML .. 59

9.5 Explainability in AI ... 59

9.6 MLOps and model lifecycle management ... 59
9.6.1 Cognitive framework tools and open-source libraries ... 60
9.6.2 MLflow and kubeflow tools ... 60

10 Security and Privacy .. 62

10.1 Security requirements .. 62

10.2 Overview of security and privacy component ... 62

10.3 Authentication ... 63

10.4 Audit, secure storage and backup ... 63

10.5 Network and hardware security ... 64

10.6 Node and container security .. 64

10.7 ML security .. 65

11 System integration .. 66

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 10 of 75 © 2023

11.1 ACES components, interfaces and interactions ... 66

11.2 ACES platform integration environment ... 71

12 Conclusion ... 73

13 References .. 74

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 11 of 75 © 2023

1 Introduction
Current edge-to-cloud architectures typically have a hub and spoke design, in which devices move
their data to a distant datacentre (hub) with IaaS and PaaS management systems to manage and
process the data with knowledge of workload resource requirements and their availability. The results
are then pushed back out to the edge devices. Hyperscale and large datacentres use their economies
of scale (incl. overprovisioning) and cognition in workload management to create stability and
performance despite the fluctuations in the demand, and the availability of resources.

Edge infrastructures (FOG, MEC Edge MicroDataCenters) are more challenged in their stability and
performance because of more stringent latency and autonomy requirements, distribution across
multiple sites, their local limited size, multi-tenancy and multi-operators, local management, with
components being concurrent and asynchronous.

This challenge to edge infrastructures is growing rapidly due to the increasing i) number of connected
devices and their data-producing and data-consuming capabilities, ii) intelligence embedded in edge
devices, iii) atomization of monolithic applications, iv) scale, speed, and complexity of edge device
interactivity in a zero-trust environment.

The Autopoiesis Cognitive Edge-cloud Services (ACES) general aim is to research an evolution of cloud
computing towards a hybrid edge-cloud continuum to effectively manage disaggregated
computational resources while enabling the execution of complex modern data analytics applications.
This is proposed through an edge systems software stack enabling decentralization and hierarchical
intelligence, with specific autopoiesis and cognitive behaviours, to manage and automate a computing
platform, network fabric, and storage resources, along with the analytics to be executed, to increase
resilience while managing simultaneous service constraints.

Autopoiesis and cognition will be infused on different levels of the workload placement framework,
service and resource management, data and policy management to manage their own stability with
knowledge of its distributed component deployment, their state of health along with the knowledge of
best practices to deal with fluctuations.

1.1 Objectives of the deliverable

The objective of the deliverable is to define the architecture of the ACES framework. This is expressed
as a set of different views, namely the functional view, the components view, and the tools’ view. To
effectively design the architecture of ACES we brought forward the characteristics and requirements
of ACES use cases which are used as the basis for our analysis and the definition of the different
requirements and needs in terms of deployment and platform control. Based on this architecture a set
of specific research areas and derived components are proposed and analysed. This list of research
areas and components will be refined in the following months of the project while particular studies
and developments will be started to address the different design specifications.

This document provides the generic architecture of ACES which will follow the project until the end.
However, specific updates may be needed and if this is the case this will be reported in different
intermediate deliverables such as the D2.2a ACES kernel components planned for M18, the D5.1
Validation and Demonstration plan planned for M19, along with the final deliverable of the project, D5.2
Use case Validation and Demonstration report, planned for M36.

1.2 Structure of the document

The remainder of this deliverable is as follows. The use case requirements are presented in Section 2
which are considered as inputs to create the architecture of ACES. The architecture along with the
different views of the architecture and the initial concepts are then described in detail in Section 3.

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 12 of 75 © 2023

Then, the various areas of interest of the ACES project are presented one by one in a different section.
Section 4 discusses Resource Management, Section 5 introduces Data Management, Section 6
presents Orchestration and Section 7 brings forward Networking. Then, Section 8 presents Monitoring
and Observability, Section 9 describes the ACES cognition framework, and Section 10 discusses
Security and Privacy. Finally, Section 11 involves Integration Design, and Section 12 concludes this
document.

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 13 of 75 © 2023

2 Use-case requirements and related
service design

The three use cases of ACES target the Energy sector. Companies from this sector operate in a complex
environment characterized by restrictive regulations, increasing competition, geopolitical influences,
and changing stakeholder expectations. To be able to respond dynamically to these changes, ensuring
open, automated communication and real-time operation of the energy system, managers need to
transform companies digitally. While the digital transformation of energy companies is inevitable,
limited access to specific resources can slow down or, in extreme cases, prevent the process of
digitalization [1].

On the other hand, climate change regulations like the Green Deal are pushing the current Power Grid
Infrastructure to its limits. Electric vehicles and renewable energy sources have reduced emissions and
energy costs but due to their distributed and inverter-based nature, they also decrease the power
quality and pose serious threats to the power network stability. Sustaining the power quality and
creating a network capable of operating in a highly distributed way creates a serious challenge for the
Transmission System Operators (TSOs). In this highly anticipated and clean energy era, the vast
penetration of metering and control devices all over the network has paramount importance but further
observing the state of the grid is not enough to achieve our goal. Sophisticated algorithms gaining
insight into the generated measurements and quickly responding to incidents will increase the
robustness of the network.

Thus, the increase in produced and transmitted data puts a heavy burden on their respective computing
and networking resources. This growth in produced data and the necessity to further process them
form a new landscape for the energy sector. Centralised Cloud computing architecture although
simpler to adopt falls short in many requirements of the future vision of a smart grid [2]. To complement
cloud computing there is a need for a solution that meets the strict latency requirements in an efficient
and distributed way to cover the vast geographical area of the power grid. Edge computing leverages
computing resources closer to sensors and users to carry out data analytics. It gains advantages for
its ability to effectively reduce system delay, lighten the burden of cloud computing centres, improve
system scalability and availability, and protect data security and privacy [3]. The ACES solution follows
this trend, enabling microgrid deployments and a highly distributed energy grid.

2.1 Use-case descriptions

The ACES platform aims to demonstrate its advanced competencies through three pilots in the energy
sector. In this section we describe the Use Cases (UCs) that will be deployed in the Greek Power
Transmission System.

UC1 – Market place and assets distribution

The Energy Market improves the efficiency of the energy power grid and provides lower prices for the
electricity customers. The TSO in Greece (IPTO) must check whether the energy transactions that take
place are feasible. In order to carry out this task, the topology of the (power) network is examined.
Taking as input the network topology with its constraints, the supply and the demand, an optimal power
flow algorithm give us a rough estimation. Secondly, prices and other characteristics like ramp-up time
or minimum-power are taken into account to solve a Market Clearing Algorithm. Finally, the prices are
settled and the amount of each generation and consumption at which price point is set. This process
takes place every 15 minutes according to Greek Energy Market Regulations.

The output may also include power network information (voltage in buses, current flow in lines,
generator production etc.). To assess the network dynamics, there are (power) load sensitivity
algorithms that tests thousands of simulation scenarios and assesses how much load the network can
withstand in each different part of the system. As long as the predicted load falls within the specified

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 14 of 75 © 2023

limits then we can be confident that the voltage will also remain within the desired limits ensuring
constant power supply to the consumers.

UC2 - Distributed process management

The penetration of Distributed Energy Resources (DERs) requires more fine-grained monitoring and
control of the grid. As with the previous UC the first stage of data processing stems from optimal power
flow. The input may vary from SCADA to PMU data. In combination with the network topology
characteristics, many insights can be given through processing. Feeding these data into machine
learning algorithms can provide both present and future estimations on the Power Grid. ML Health index
algorithms provide an estimator for the state of the topology under monitoring. Enhancing this algorithm
with rule-based processing of the data can constitute a Digital Twin of the Network.

Proactive Automatic Generator Control (AGC) simulations can assist in proactively adjusting power
production, which is especially useful for production units that require lead time before changing their
production levels. Monitoring of data gives us leverage to establish alarms and set thresholds further
aiding the AGC units that are registered in the network.

Demand prediction algorithms calculate the expected demand in the upcoming timeframes (some hours
ahead) which can solve the power flow ahead of time. The calculated generator contributions could be
used to control the generator production ahead of time increasing the stability of the network.

UC3 – IoT-based asset monitoring and management

Power Network operators have periodic planning cycles for assets-maintenance. Periodic on-site
inspections can be replaced by advanced metering, sensor data and GIS systems for real time outage
detection, prediction, and more reliable investment planning and deferral.

Taking as input SCADA data, the ML Health index Anomaly Detection algorithm identifies anomalies
such as cases of low/high reactive power, high voltage instance etc. Anomalies could be used by the
operators to analyse unexpected instances and design mitigation actions for the future, improving the
health of the grid. The outputs of the algorithms include the list of anomalies that could trigger alerts
for the operators.

The typical data that are expected to be used for UC 3 include SCADA data (Active Power, Reactive
Power, Voltage and Current) in per minute values. Outputs includes list of anomalies that trigger
relevant alerts for the operators.

2.2 How ACES supports the use cases

Massive volumes of data are generated every second in smart grids. Advanced data analytic algorithms
are required to transform the data into information and knowledge, which can be further utilized for
grid operations and services. Generally, these data analytics depend on information and communication
technologies (ICTs), which perform a critical role in data collection, transmission, and processing.
Among the major functions of ICTs, computing determines how grid data analytics are executed and
thus, it becomes the foundation for grid operations and services. Centralized cloud computing prevails
as a feasible solution for the grid computing paradigm. In cloud computing, geo-distributed devices
and equipment are connected to cloud data centres, making centralized decisions, and issuing control
orders. Nevertheless, it suffers from several weaknesses, such as limited bandwidth resources,
heterogeneous environments, and privacy concerns. To tackle this problem, another solution, edge
computing, pushes the frontier of computation applications away from centralized nodes to the
communication network’s extremes. Edge computing leverages computing resources closer to sensors
and users to carry out data analytics. It gains advantages for its ability to effectively reduce system
delay, lighten the burden of cloud computing centres, improve system scalability and availability, and
protect data security and privacy [4].

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 15 of 75 © 2023

Following this paradigm shift, the Digital Transformation in the Energy Sector aims to facilitate its
seamless operation, further exploiting both communication and computation advantages to increase
efficiency.

UC1 – Market place

The decentralised architecture of ACES is an enablement opportunity for decentralised market
management in the energy network. Local simulations will run market algorithms for various parts of
the network that will communicate with each other trading flexibility and network characteristics. The
edge capabilities of ACES provide the opportunity for calculating power flows in the different edge
servers in parallel as well as selecting the optimal allocation of the computational workload.

With the utilisation of a distributed edge computing architecture, we expect an improved performance
of the marketplace algorithm as the optimal power flow simulations of the grids will be calculated in
parallel across the various servers of the network. Additionally, we expect that we will be able to run
additional and more complex modules within the 15-minute intervals which may prove useful in
increasing the stability of the network.

Expected behaviour of the ACES platform in this UC:

● Seamless operation of the 3 markets (Attica, Crete, Cyclades)
● Upscaling of performance through the other nodes
● Expandability (adding extra regions)
● No single point of failure
● Safe (no disruption) and secure (data privacy) operation

UC2 - Distributed Process Management - Automatic generator control

Distributed Process Management can happen locally in the edge servers taking advantage of the
decentralised architecture and its proximity to the data generation. The computationally expensive
algorithms (Digital Twin and ML Grid Health) will run in parallel for different parts of the network and
the outputs for each grid will be combined to cover the configurations of the whole energy grid.

Expected behaviour of ACES platform in this UC:

● Host the monitoring and control functions application in the platform
● Meet the latency requirements (seconds, sub-seconds) of the workloads
● Scalability
● No single point of failure
● Safe (no disruption) and secure (data privacy) operation

UC3 – IoT-based Asset Monitoring and Management

The decentralised architecture of ACES provides the opportunity for parallel calculation of ML grid
health algorithms, for the various parts of the energy grid. Trained models can be transferred across
the various edge components enabling the transfer of patterns learned from the data. Processing can
happen locally satisfying latency and efficiency requirements as the data will not need to be transferred
to centralised cloud systems for further processing but only for historical storage. This could enable
sub-second performance in the future as the incoming SCADA data streams become more granular.
Expected behaviour of ACES platform in this UC:

● Host the monitoring and asset management applications in the platform
● Meet the latency requirements (seconds, sub-seconds) of the workloads
● Scalability
● No single point of failure
● Safe (no disruption) and secure (data privacy) operation

2.3 Use-case requirements

Operating in a Utility Industry, TSOs need safe and seamless operation of the power grid. The EMDC
that will be acquired through the project will not completely replace the current infrastructure but will

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 16 of 75 © 2023

enable it to enhance the capabilities of a TSO to sustain and fortify its uninterrupted operation of the
grid. The Use Cases demonstrated in the ACES platform should meet certain requirements along the
following dimensions like benefits, security, availability, scalability, redundancy and latency. Those are
described in the list below:

1. (For all UCs) The solution should provide availability of at least 99.9%.
2. (For UC1) The 3 market regions (Athens, Crete, Cyclades) should be fully operable in the ACES

platform and have horizontal communication.
3. (For all UCs) There should be no single point of failure.
4. (For all UCs) The data used must remain private and secure.
5. (For all UCs) The solution should be scalable so that in the future we can add additional

locations across the energy grid as well as include additional assets in the network grid.
6. (For UC1) When one EMDC fails other nodes must be used as hot swaps.
7. (For all UCs) The latency of communication should be close to sub-second to enable real-time

responses.
8. (For UC1) the data should remain stored for at least 1 year.
9. (For UC2 and UC3) the data should remain stored for at least 3 months.
10. (For all UCs) The solution should be able to cater to diverse workloads, such as periodic, non-

predetermined time intervals, or near-real-time workloads.

In Table 2.1 we describe the various use case components that will be available in ACES. We describe
their type (periodic/occasional/continuous), we specify the frequency of running those components
(real-time/every few hours/weekly, etc), and we indicate the timeframe for each component.

Table 2.1: ACES processes including type, frequency, and timeframes

PROCESS TYPE FREQUENCY TIMEFRAME

Optimal Power
Flow

Periodic: workload spaced
at regular time intervals –

static load

Seconds
Seconds

Load sensitivity
analysis

Occasional workload with
no (or very small) changes

or fluctuations

Could run for each
different load every

time the specifications
of the network change
(addition/change of a
generator / line etc)

Elastic

Market Algorithm
-

Periodic workload spaced
at regular time intervals –

static load

Minutes-Run every
15minutes

Strict deadline

Optimal power
flow using
demand

prediction input

Periodic workload spaced
at regular time intervals –

static load

Hours-Run every 7h
and / or every 48h
Run after demand

prediction module is
run

Elastic

ML Health
Algorithm -

Machine Learning
Based Anomaly

Detection

Training: Periodic workload
spaced at regular time
intervals – static load

Scoring: Continuous scoring
as SCADA data is retrieved

Days-Training: run
every week

Seconds-Scoring: run
real time

Seconds

(Inference)
Elastic (Training)

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 17 of 75 © 2023

Most Use Case components are considered periodic workloads spaced at regular time intervals. Their
load is considered static and similar to the previous runs. The frequency of the runs varies from every
15 minutes for power flow simulations to every 1 or 2 months for the retraining of the demand prediction
algorithms. For the Anomaly Detection algorithm, the scoring needs to happen near real-time as new
data becomes available. There are also occasional workloads that occur in non-predetermined time
intervals. For example, the load sensitivity analysis needs to run only when the system parameters
change. Those workloads are not very frequent and not scheduled.

The consideration of the above use case requirements enabled us to design and refine the ACES
architecture we present next, accordingly.

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 18 of 75 © 2023

3 Overview architecture
This chapter provides the overview architecture of the ACES platform. This is defined by considering
the use case requirements, as presented in the previous chapter; by aligning to the generic architecture
of ongoing EU working groups and past or ongoing Edge-Cloud EU projects; and by considering the
motivation to go beyond the state-of-the-art in aspects such as distributed control of disaggregated
hardware resources, multi-cluster orchestration, decentralization, network programmability, and
swarm intelligence. These aspects are mainly pushed by the increasing heterogeneity, complexity, and
disaggregation of computational resources at the edge.

In the ACES context, we consider that each Edge MicroDataCenter (EMDC) will be composed of several
independent clusters, to provide better fault tolerance for sensitive workloads while enabling resource
segregation and the usage of different clusters for single applications through seamless executions.
Different EMDCs may be distributed geographically, to address lower latency and fewer data transfers
through data locality. On this basis, ACES enables the seamless execution of single applications even
upon the clusters of different EMDCs (east-west) while the connection from edge to Cloud (south-
north) is also supported.

Furthermore, the possibility to enable automated control and self-maintenance of the system, bringing
autopoiesis capabilities for EMDCs along with the AI/ML lifecycle management and the combination of
AI/ML with the edge is another important focus of ACES, which is reflected through its various
architectural components and integration choices.

3.1 ACES concepts and background

Following a bottom-up approach, ACES concepts are represented by the need to support the resource
management of disaggregated consumable resources at the edge. The de facto standard in resource
management from edge to cloud is currently Kubernetes. Hence, for simplification and standardization
purposes, we will adopt this tool. However, this imposes some architectural constraints such as the
fact that complete decentralization will be a challenging task [5]. The control of multiple Kubernetes
clusters, in the context of one or multiple EMDCs, can be performed, enabling decentralized control by
adopting and improving techniques [6] proposed in the context of Kubernetes federation (deprecated
since the end of 2023) and the various new projects which are inspired by it and continue in similar
paths (Nuvla, Karmada, Open Cluster Management, etc). Following these techniques, we will be able
to also provide the connection between edge and cloud data centres.

Figure 1.1 provides a high-level overview of the principal concepts of the ACES platform. In particular,
at the bottom of the figure, we can see how the control of disaggregated resources will take place
within one single Kubernetes cluster through the traditional centralized, hierarchical way, potentially
adopting swarm intelligence scheduling policies; whereas in the higher layer, for the control of multiple
clusters of one or multiple EMDCs, we opt for a fully distributed control of resources, bringing more
innovation related to decentralization in all layers of resource management such as networking,
storage, and scheduling based on swarms.

To allow this to take place the ACES software stack is composed of a number of innovative systems
software. Following the bottom-up view in Figure 3.1, the Operating System, the Resource
Management, and the Container Management Interfaces will allow for better control of the different
hardware instances (network interfaces, persistent volumes, etc) as disaggregated resources through
containerization and correct partitioning. This will be completed by the single cluster orchestration
which, as mentioned before, will be performed using Kubernetes standard with extensions in the
scheduling layer to allow swarm intelligence algorithms to take place. Previous work [7] showed very
promising results but to the best of our knowledge, to this date, no real implementation of swarm-
based scheduling has been implemented in Kubernetes.

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 19 of 75 © 2023

Figure 3.1: High-level overview of the ACES platform

Moving higher, to enable the execution of applications across multiple clusters, we need software to
enable multi-cluster orchestration along with decentralized storage and networking. These aspects
need to be taken into account, and even if various techniques exist as open-source solutions, there are
open research issues and possibilities for improvements, especially taking into account the
disaggregation of hardware and the particularities of the applications.

An important aspect to be taken into account for optimal orchestration is the monitoring of resources
and the observability of the application executions, as shown in the top left of the figure. These features
will provide the necessary information and metrics to enable optimal resource selection and dynamic
workload placement. Furthermore, security and privacy issues, at the top right of the figure, are
primordial to be addressed in the context of ACES, including container, network, and ML security.

Moving towards the top of the figure, an important aspect to be taken into account is the Cognitive
Engine, which will provide autopoietic capabilities, enabling self-maintenance and other self-*
properties (detailed in Deliverable D4.2), particular enhancements to ML models for the edge, usage of

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 20 of 75 © 2023

edge computing advantages for ML models along with everything related to the ML lifecycle
management of the platform. This engine will enable the techniques for MLOps for all the systems'
internal AI/ML needs and will also offer the necessary services for application development.

To enable the design of applications to be executed on the platform, ACES will need to provide the
right tools to allow users to prepare their applications. This is shown at the top level of the figure. For
this to be feasible we opt for workflow/graph-based application design which is a typical way to enable
the expression of scientific and data analytics calculations. The application design also needs to
consider data management. Finally, a frontend interface connected to an authentication/authorization
panel is needed to enable the connection, the permission controls, and the high-level view of the
different services offered to users and admins.

3.2 High-level view of the architecture

Following the initial concepts and background, this section provides a high-level view of the
architecture from different angles. First, we provide the architecture explaining the different
functionalities that are needed on each layer. Then, we translate this to generic components, per layer.
Finally, we describe the type of tools to be explored. These views are then completed by a closer look
at the hardware architecture and the application structure.

3.2.1 Functional architecture

The functional architecture, presented in Figure 3.2, provides the physical layer with the hardware
components and their different characteristics. On the cluster layer, we can see the Resource
Management and Single-cluster Orchestration blue boxes representing both the node and single
cluster level functionalities. The important aspects we expect here, besides the typical node resource
management features such as cgroups, are related to the ways containers will be deployed upon the
nodes, how persistent volumes will make use of different partitions of nodes’ disks, and how networking
will be virtualized to be used in the context of containers communication across nodes. Furthermore,
in terms of orchestration, the way resources will be selected for particular workloads and the way tasks
will be placed upon the resources, along with different constraints/SLAs/SLOs policy usage, are
particularly important to better use of the underlying heterogeneous resources in the context of edge-
cloud related platforms.

The multi-cluster layer, the green box in the figure, provides the multi-clustering tools, and how the
different clusters will be connected and controlled to enable decentralized storage, P2P networking,
and adapted distributed workload placement. These features will allow the connection of different
clusters between one EMDC or more EMDCs, along with possibly the connection towards the Cloud.

On the left side of the figure, we can view the monitoring and observability box, which defines the need
for collecting the metrics from different software and hardware per node, aggregated on the cluster
level and per cluster aggregated for multiple clusters. On the right side of the figure, we express the
needs for security and privacy spanning across all layers and features of the platform.

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 21 of 75 © 2023

Figure 3.2: ACES functional architecture overview

Moving higher at the layer of Development and System Control layer, the purple box, the Cognitive
Engine expresses the needs to provide functionalities to enable the AI/MLOps of the platform, which
will be used not only by the internals but also offered as a service to be used by the ACES users.
Furthermore, this layer offers the higher level of user interfacing by expressing functionalities such as
the frontend interfaces, the ways to build automations based on workflows, and the user and system
level data management.

Finally, the application layer shows the level of ACES use cases which define how they will be
expressed as ACES applications to be executed upon the platform.

3.2.2 Components-based architecture

Based on the previous Functional architecture, Fig. 3.3 provides the different components that are
derived from the functional needs of the platform. There is a one-to-one mapping to the functionalities
mentioned in the relevant boxes of the functional architecture. It is interesting to see how monitoring
and security boxes are perpendicular to the different layers since they are related to all different
aspects of the system software. This architecture focuses on the most important components of the
ACES edge-cloud software stack and provides the principal areas upon which some innovation will be
brought in ACES.

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 22 of 75 © 2023

Figure 3.3: ACES components-based architecture overview

This component-based architecture diagram will be used as a reference moving forward in ACES, and
an update of this architecture will be provided in the upcoming deliverable D2.2a.

3.2.3 Tools-based architecture

Based on the previous components-based architecture, Fig. 3.4 provides the tools-based architecture,
which shows the view from the angle of possible tools to be used to cover the functionalities demanded
by the components.

In particular, it is interesting to see that while Linux OS takes the place of the node operating system,
Kubernetes brings the cluster operating system and covers both the resource management and the
single cluster orchestration engine. Of course, different independent tools will be used to cover each
functionality, such as containerd or CRIO to provide the container runtime interface, or Cilium for the
Container Network Interface.

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 23 of 75 © 2023

Figure 3.4: ACES tools-based architecture overview

In a similar way, workload placement will be brought by different Kubernetes schedulers. ACES will
innovate by bringing specific swarm-based scheduling policies, as will be discussed in upcoming
sections. Furthermore, multi-cluster control will be brought by the open-source software nuvla.io,
which will be enhanced with swarm-based scheduling policies for workload placement. On the multi-
cluster networking and service mesh side, tools such as Submarriner or Istio will enable container
communications, in the case of workflows which span their execution across different clusters with
different networks. Monitoring and observability will be based upon Prometheus, which will also cover
multi-clustered aggregations through tools such as Thanos.

On the security side, various software will be used and enhanced in the context of ACES, as we will see
in Chapter 10. For example, techniques such as OAuth2 will be used to enable the secure access to
users on the platform. Several innovations will be brought forward in ACES in this space, including in-
network security advances, increasing the robustness of ML training and inference, among others.

The above tools-based architecture shows the main guidelines, but the definition of the components
and tools to be implemented will be refined in the upcoming deliverable D2.2a on ACES kernel
components.

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 24 of 75 © 2023

3.2.4 EMDC and hardware architecture
Technology providers are continuously innovating to reduce the complexity of tightly linked hardware
components and trade-offs that need to be made because of these tight links. More loosely linked
hardware components allow a wider application of swarm technologies. The recent technological
innovations relevant to powerful edges are:

• Storage: NVMe (Flash storage) over Fabric, creates a low latency storage pool from all NVMe
flash storage within an EMDC and within a network of EMDCs connected via WANs and LANs.
This storage pool can be accessed by any server within the EMDC and EMDC network at low
latency. NVMe/TCP is the latest addition to NVMe-oF and makes it possible to use NVMe-oF
across a standard Ethernet network without having to make configuration changes or
implement special equipment. (Note: the management of NVMe/TCP storage can be offloaded
from the CPU to a DPU to free up the CPU for other work).

• Composable infrastructure with CXL: Disaggregated CXL 1.1 memory will ship with Intel
Sapphire Rapids Xeon Scalable, AMD's fourth generation Epyc Genoa and Bergamo processors,
and enables memory to be attached directly to the CPU over the PCIe 5.0 link. Vendors
including Samsung and Marvell are already planning memory expansion modules that slot into
PCIe like GPU and provide a large pool of additional capacity for memory-intensive workloads.

In light of recent and future technologies and given the limited local capacities of an EMDC, the scarce
resources that need optimized utilization are, primarily, the various cores (CPU, FPGA, GPU, Custom
ASIC) of the heterogeneous EMDCs. Second, memory and caching storage. Third, the internal network/
bandwidth. Additionally, the objective of ACES is to adopt CXL as much as possible and build this
technology in edge data centres roadmap, and develop the intelligence to manage CXL efficiently.

Following the initial ACES concepts, Fig. 3.5 provides a zoom on the high-level hardware architecture,
featuring the way we envision that EMDCs will be structured internally. On one side, by providing three
different independent clusters connected in a fully distributed manner; on the other side, by different
disaggregated hardware resources to be used in the context of a single Kubernetes cluster.

Figure 3.5: ACES tools-based architecture overview

The architecture will be similar on the other EMDCs. The connection between different EMDCs will be
performed following similar techniques such as those for internal EMDCs.

3.2.5 ACES application structure

The applications in the context of ACES are represented by workflows, which are graphs representing
a sequence of tasks or microservices to be executed upon the computational resources. Initially, simple
sequence workflows will be supported, but if the use cases-related workflows evolve towards more

https://www.snia.org/educational-library/nvme-protocols-transports-deep-dive-2021
https://www.techtarget.com/searchstorage/feature/NVMe-over-TCP-details-and-features-you-need-to-know
https://www.theregister.com/2022/05/10/samsung_512gb_cxl_ram_module/
https://www.theregister.com/2022/05/18/marvell_cxl_composable/

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 25 of 75 © 2023

complicated workflows (e.g., with loops or parallel phases) then this will need to be supported through
the workflow management system. Figure 3.6 provides the structure of the typical ACES application,
composed of different microservices which are connected through specific dependencies among them.
This is the typical and most common way that data centre-based data analytics and scientific
calculations are expressed.

Figure 3.6: ACES application structure

Figure 3.7 provides the instantiation of the execution of an application upon the pool of consumable
resources of the Edge Micro DataCenter. Each microservice will be allocated several consumable
hardware resources such as CPUs, Memory, GPUs, etc., based on their needs, and once each
microservice execution is performed its outputs are used as inputs for the following microservice to be
completed. The dependencies between them can be defined following various patterns and based on
the hardware architecture we provided previously; ACES will allow the execution of microservices to
take place on different EMDC clusters. This will be enabled through the ACES multi-cluster networking
capabilities.

Figure 3.7: ACES application executed upon an EMDC

Since ACES adopts Kubernetes as the cluster operating system, we align to the concepts used in K8S.
In particular, a microservice in ACES will be expressed by a K8S pod which will contain one or multiple
containers executed upon one single node. Once the execution is instantiated, specific resources will

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 26 of 75 © 2023

be allocated to allow the pod to be executed correctly. Figure 3.8 provides the view of an ACES
microservice along with the different internals, to better understand the connections among the
different concepts.

Figure 3.8: ACES microservice

3.3 Overview of features and innovations

In this section we present an overview of the features and expected project innovations, grouped by
topic.

Resource Management

On the Resource Management side, ACES will bring features related to the optimal control of Edge
Micro DataCenters single clusters through Kubernetes, adapted for the disaggregated resources and
the workflow-based applications of ACES. This entails making use of specific Kubernetes adopted CRI,
CSI, CNI tools and device plugins to cover the needs for resources heterogeneity and application
complexity. Furthermore, it will offer control of multiple Kubernetes clusters by making use of tools
beyond Kubernetes federation, enhanced with decentralization and adapted scheduling.

Concerning innovations, the decentralized control, and the implementation of swarm intelligence for
scheduling on single cluster, along with high availability and scalability of the control-plane, and the
optimization of autoscaling to better function at the edge, are some directions upon which the focus
will be driven. Furthermore, in a multi-cluster setting, sophisticated scheduling optimizations are
needed to manage deployments across clusters efficiently.

Data Management

The ACES data management component is critical for maintaining the operation of the platform,
handling all the data required for orchestration and AI reasoning, which gives the system its self-
managing qualities. It works with the ACES knowledge model, which encapsulates supply, demand, and
runtime information, all essential to represent the architecture's resources, application requirements,
and dynamic status. Key requirements for this component include handling various data types and
relationships efficiently within a knowledge graph, accommodating time-series data, utilizing
decentralized storage solutions for scalability and locality, ensuring data consistency, availability, fault
tolerance, and security across geographically distributed environments.

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 27 of 75 © 2023

With regard to innovations, the ACES data management component embodies a novel approach to
distributed data handling that supports advanced cloud-edge computing environments. Notable is the
potential use of knowledge graphs for representing data models, which can simplify complex
information management and provide agility in querying and retrieving data. The emphasis on
decentralized storage accentuates a cutting-edge model for data distribution that enhances scalability
and preserves privacy. Another innovative perspective is the synchronization within a decentralized
storage system, which aims to maintain consistency of the knowledge base without full replication,
allowing data to remain local but universally accessible and up-to-date. Additionally, the seamless
interplay with other ACES components, like swarm intelligence, highlights a dynamic and adaptive
ecosystem built for high performance and resilience in cloud-edge orchestrations.

Orchestration

For the orchestration of workloads in an EMDC, we propose a decentralized approach that presents a
key innovation: central to our approach is the use of swarm agents, representing demand and supply
entities on different hierarchies. These highly decentralised agents collaborate within an EMDC
environment, orchestrating processes such as workload placement, storage management, and caching
optimization. The interaction between the agents is orchestrated through swarm intelligence
algorithms. For example, demand swarm agents autonomously seek out the most suitable node for
workload placement, while supply swarm agents determine the optimal workload to process based on
available resources and capacity. This collaborative decision-making process enables the system to
efficiently allocate workloads to nodes, optimizing processing, latency, and resource utilization.

Thus, in ACES we propose the edge continuum with its characteristics and limitations as a novel field
of application for swarm intelligence leading to a distributed, emergent scheduler.

Networking

In terms of features, the ACES network architecture emphasizes intelligent, scalable, and secure
networking within an edge-computing framework driven by a set of key requirements. It focuses on
service connectivity with QoS prioritization, high network observability through advanced telemetry,
and optimized throughputs and latencies for responsive edge computing capabilities. The design
incorporates a closed-loop network control mechanism that harnesses machine learning analytics for
dynamic network adaptability, ensuring that ACES can efficiently scale up as the edge infrastructure
expands. It also features decentralized control to avoid single points of failure, thus enhancing network
reliability. Moreover, integration with Kubernetes and programmable network switches aid in the
management of multi-cluster networking, allowing for dynamic scaling and pod mobility to ensure
service continuity across various edge environments.

Concerning innovations, ACES will leverage a software-defined networking (SDN) model, with the
control plane dynamically orchestrating the multi-cluster network, integrated with machine learning to
establish a closed-loop control system. The network emphasizes fault tolerance through replicated
SDN controllers, scalability by distributing control functions, and security through AI-driven
mechanisms. Furthermore, specific programmable data plane devices will be employed for network
function acceleration, advanced telemetry, and executing swarm-based orchestration mechanisms
directly on network devices, showcasing a shift towards utilizing in-network computation for enhanced
edge intelligence. These data plane innovations offer an adaptable, high-performance network capable
of sophisticated monitoring and real-time data analysis, as well as a more intuitive control over the
complex interactions between network components and edge services.

Monitoring and Observability

The ACES monitoring and observability component will enhance the supervision of complex,
decentralized systems with disaggregated hardware resources. It will include a storage component for
time-series data, a Retrieval Worker for pulling metrics, and an API server for data retrieval. The
architecture will incorporate a Push Gateway for alternative data ingestion from ephemeral workloads,
a Data Forwarder for communicating with other ACES components or third-party tools, and an Alert

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 28 of 75 © 2023

Manager for managing notifications based on anomalies detected by an Anomaly Detection submodule.
The Service Discovery will automate the identification of targets for monitoring, while Data Analysis,
Export and Visualization tools will facilitate the analysis and display of data. These components ensure
that all ACES resources can be effectively monitored across the various layers, and types of software.
The architecture will enable the handling of a variety of data such as traces, logs, and metrics while
providing a framework for both push and pull data collection methods.

Concerning innovations, the ACES monitoring and observability framework will provide a particular
handling of network data and event-driven monitoring. It may leverage on the computational
capabilities of network devices such as programmable switches and SmartNICs/DPUs to perform fine-
grained, flow-based metric computations directly within the data plane, facilitating richer telemetry
data without traditional sampling limitations. This approach will enable network operation tasks, such
as traffic engineering or intrusion detection, to be more accurately and promptly performed. The
framework also plans to integrate event-driven monitoring through a novel change detector primitive
using memory-efficient sketches, enabling rapid and space-efficient change detection in network
traffic. This capability ensures the monitoring system can react responsively to significant changes in
network conditions, in contrast to the fixed periodic monitoring intervals, while enhancing operational
awareness and responsiveness within the ACES platform.

ML-based cognition

In terms of features, the Cognitive Framework in the ACES project offers a suite of advanced features
to enable autopoietic capabilities in edge data centers (EMDCs), promoting self-maintenance and
adaptive management of resources. It integrates continuous learning, predictive analytics, and machine
learning (ML) lifecycle management, allowing systems to learn from the environment and user
interactions for optimal performance. The framework's feedback loops allow for proactive, data-driven
decision-making, aligning with broader organizational goals. Techniques such as federated and split
learning support collaborative, privacy-preserving model training, while the integration of swarm
intelligence with AI/ML enhances distributed resource management. Explainable AI (XAI) increases
transparency and trust in automated decisions, and the MLOps component ensures efficient and
standardized ML model lifecycle management across the platform.
In terms of innovation, the ACES platform introduces novel approaches such as employing autopoiesis
for self-sustaining systems, leveraging edge-specific, lightweight ML models that navigate
computational and latency constraints, and embracing collaborative methodologies like federated
learning for data privacy. The combination of AI with swarm algorithms exemplifies a cutting-edge
computational method for optimizing distributed systems, and integrating XAI provides transparency
in automated decision-making. The platform’s MLOps strategies reflect a forward-thinking approach in
managing the complex and evolving landscape of ML models, emphasizing efficiency, reuse, and
consistent monitoring throughout the ML model lifecycle.

Security and Privacy

The main features related to security include a multi-layered security and privacy architecture designed
to protect cloud-edge services. Key focus areas include robust authentication processes with
anonymous schemes and pseudonyms, ensuring the availability and integrity of services through fault-
tolerant replication and auditing tools, network and hardware security using ML-based attack detection
and innovative network switches, node and container security with advanced anomaly detection
models and defence strategies, and machine learning security to counter data/model poisoning and
inference attacks. The system emphasizes compliance with strict privacy regulations like GDPR and
incorporates components like zero-trust environments, non-revocation proofs, and secure two-party
computation to safeguard data privacy.

The main innovations in ACES revolve around enhancing security in cloud-edge systems against
sophisticated cyber threats. Noteworthy advancements include the development of anonymous
authentication methods that comply with privacy laws and accommodate non-revocation proofs, and
an innovative auditing tool that uses cryptographic proofs to pinpoint data locations with high precision.
The incorporation of an ML-based attack detector that operates within a network switch stands out as
a performance-centric measure to detect zero-day attacks. Furthermore, the container security
framework employs deep-learning-based dynamic anomaly detection to protect against new threats,

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 29 of 75 © 2023

and sophisticated strategies to defend ML systems, like model clustering and secure two-party
computation, showcase novel approaches to fortify systems against complex attacks such as
backdoors and inference breaches in distributed environments.

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 30 of 75 © 2023

4 Resource management
Resource management holds a very important place in the software stack of distributed systems since
it is responsible for providing the necessary computing power to user jobs based on their needs and
the resources availabilities. The advent of Cloud and Big Data systems along with the usage of
microservices and containerization brought the needs of environment provisioning and auto-scaling.
Hence, the management of applications’ lifecycle orchestration became an integrated part of resource
managers. Traditional HPC resource managers such as Slurm and PBSPro do not provide integrated
support for environment provisioning and hence no orchestration is feasible. However, state-of-the-
art resource managers such as Mesos, Yarn and Kubernetes enable the deployment of containers and
allow the applications’ lifecycle management.

4.1 Background and principal concepts
Some studies on orchestrators discuss the various advances made in scheduling [8]. Kubernetes [9]
and Mesos [10] are two of the most advanced open-source orchestrators. Kubernetes performs the
resource management of a cluster of computational nodes and simplifies the deployment and
management of containerized applications. It is based on a highly modular architecture which abstracts
the underlying infrastructure and allows internal customizations such as deployment of different
software-defined networking or storage solutions. It supports various Big Data frameworks such as
Hadoop MapReduce, Spark, and Kafka and has a powerful set of tools to express the application
lifecycle considering parameterized redeployment in case of failures, auto-scaling, state management,
etc. Furthermore, it provides advanced scheduling capabilities and the possibility to express different
schedulers per job.

Kubernetes orchestrator enables the support of Software Defined Infrastructures and resource
disaggregation by leveraging on container-based deployments and particular drivers based on
standardized interfaces (Container Runtime Interface [11], Container Storage Interface [12], Container
Network Interface [13] and the device plugins framework [14]). These interfaces enable the definition
of abstractions for finer-grain control of computation, state and communications in multi-tenant
environments along with optimal usage of the underlying hardware resources. Open-source solutions
such as k3s [15] where Kubernetes heavyweight internal procedures have been stripped down are
more adapted for the edge. Another open-source alternative that could be interesting for the
deployment of individual autonomous edge resources is Canonicals’ microk8s [16] which can be
evaluated for the mobile edge resources case, needing to orchestrate tasks and workloads
autonomously when disconnected from the network. In a similar way, the multi-cluster special interest
group (SIG) community of Kubernetes has been working on the federation v2 project [17] on integrating
multiple clusters under a federation while providing a generic scheduling engine that, based on policies,
is able to make decisions on how to place arbitrary Kubernetes API objects. While this project has
recently been deprecated, systems such as Nuvla, Karmada and Open Cluster Management enable
features of the federation which, along with networking techniques such as Submarriner and Istio
systems, can enable the execution of applications across multiple clusters. An interesting solution
combining edge system and multi-cluster control is provided by Oakestra [18], a hierarchical,
lightweight, flexible, and scalable orchestration framework for edge computing. Oakestra features a
federated three-tier resource management, delegated task scheduling, and semantic overlay
networking proposed as an alternative for Kubernetes.

Asuncao et al. [19] studied resource management challenges regarding hybrid deployments including
IoT and Edge. They consider that managing task scheduling and allocation of heterogeneous resources
along with adapting an application to current resource and network conditions will require the
development of new schedulers and that allocations have to be dynamic enough to support migration.

Resource management in a container-based cluster environment is a complex but essential aspect of
ensuring that applications and services deployed across the cluster perform optimally and reliably.
Containers have emerged as the standard unit of deployment in edge-clouds; hence, managing the
resources they consume (such as CPU, memory, storage, and network bandwidth) becomes crucial for

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 31 of 75 © 2023

both the stability and efficiency of the entire system. Containers are lightweight, usually ephemeral,
and they often run in dense multi-tenant environments. Due to their transient nature and the dynamic
workloads they typically support, effective resource management strategies must be used to address
the varying demands of different applications while utilizing the underlying infrastructure resources
efficiently.

Kubernetes is the de facto standard for Cloud or Edge resource management and container
orchestration, with a rich set of features for managing all types of heterogeneous resources. It
automatically schedules containers based on resource requirements and availability, and handles the
lifecycle of containers, enabling the configuration of resource limits and requests for containers, while
providing auto-scaling and self-healing capabilities. In addition, it provides storage and network
orchestration allowing storage to be managed dynamically while defining how services communicate
among them.

ACES will adopt Kubernetes and its APIs to control the resources on a single cluster level as shown in
the high-level view of the architecture. The resource management will be performed considering 3
main blocks or resources: Computing, Storage and Networking. Each of these plays a vital role, and
interfaces like Container Runtime Interface (CRI), Container Storage Interface (CSI), and Container
Network Interface (CNI) help abstract and manage these resources efficiently.

4.1.1 Runtime

Runtime resources in Kubernetes entail managing the lifecycle of containers and ensuring they have
the necessary compute resources to function, such as CPU and memory allocations. The orchestration
of these containers is crucial to the smooth operation and scaling of applications. The CRI abstracts
the container runtime from the kubelet (the primary agent that runs on each node), allowing Kubernetes
to use different container runtimes without requiring integration into the Kubernetes codebase. It
defines a set of RPC calls for functionalities such as container and image operations. The kubelet uses
CRI to manage container lifecycle events like starting and stopping containers, as well as handling their
resource usage by adhering to the specified resource limits and requests.

4.1.2 Storage

Kubernetes storage management is related to the provisioning, attaching, and managing of the lifecycle
of persistent storage used by applications. Automating these tasks and providing high availability of
data is essential in cloud-native environments. CSI standardizes and abstracts the way storage
providers interact with Kubernetes clusters. Through the standard API, the different storage plugins
provided allow Kubernetes to work with a wide array of storage solutions. CSI facilitates volume
provisioning, de-provisioning, mounting, unmounting, and snapshot operations initiated by Kubernetes.
This enables Kubernetes to manage persistent data storage across different storage providers in a
unified manner.

4.1.3 Networking

The Network management in Kubernetes ensures seamless container-to-container communications,
Pod-to-Pod communications across different nodes, and external access to services running inside the
cluster. A reliable and secure networking setup is fundamental to distributed applications' architecture.
The CNI abstraction provides a standard for configuring network interfaces for Pods. By using a plugin-
based architecture, CNI allows for various networking solutions that can be used with Kubernetes,
which enables it to support different network models in alignment with organizational needs and
policies. CNI plugins manage the assignation of IP addresses to Pods, set up network routes, and
configure network namespaces. This allows Kubernetes to abstract the complexity of the underlying
network topology and operations from the users and operators of the cluster.

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 32 of 75 © 2023

4.1.4 Linux OS

Kubernetes makes use of cgroups and namespaces, Linux kernel features that enable the isolation and
allocation of the CPU, memory, block I/O, and network resources for containers. Furthermore, it
provides different security contexts which allow the definition of privilege and access control settings
for Pods and containers, leveraging underlying Linux security features like SELinux, AppArmor, and
seccomp. Finally, the Kubelet agent which runs on each Kubernetes worker node monitors its
consumption and availability.

4.2 Resource selection and workload scheduling

In the ACES context we opt for decentralization. Thus, a possible direction would be to completely
decentralize Kubernetes as studied in [5]. However, enabling this in Kubernetes is hard, with arguable
value at this stage. A better technique has been adopted by the researchers of the Oakestra system
[18], who introduced a new resource manager and orchestrator inspired by Kubernetes but built from
the ground up for the edge. This study highlights the advantages in terms of scalability at the edge,
when segregating the disaggregated resources across a larger number of clusters and enabling the
deployment of applications across different clusters. This actually justifies and motivates further our
design to opt for multiple clusters in one EMDC.

Even if Oakestra seems a very adapted solution for the edge, in ACES we will use Kubernetes as a
single-cluster resource manager, since we are interested in the standardization capabilities. However,
our goal is to adopt swarm intelligence algorithms to perform resource selection and workload
placement. Related work [20] demonstrated impressive speedup; however, these were limited to
simulation-based implementations and analyses. To the best of our knowledge, as of the present date,
there has been no tangible realization of swarm-based scheduling within the Kubernetes framework.

Our approach entails collecting different historical and real-time monitoring data related to the EMDC
resources, and combining them with the applications and microservices requirements, to perform the
resource and workload matching. We give some detail on the swarm-based policy we plan to explore
in Chapter 6, and how to integrate this policy as a scheduling plugin within Kubernetes.

4.3 High availability
High availability for the Kubernetes control plane is primordial to guarantee continuous management of
cluster resources, even in the event of individual component or node failures. Achieving such reliability
requires a specifically designed architecture where the critical control plane components—such as the
kube-apiserver, etcd datastore, kube-controller-manager, and kube-scheduler—are deployed in a
highly available configuration. This can involve running multiple replicas of each component across
several nodes to mitigate the risk of correlated outages.

In the context of Kubernetes single cluster resource management, the API server acts as the gateway
to the control plane, managing and persisting the state of the cluster in the etcd database. Etcd must
also be reliably replicated and consistently maintained. A high-availability setup often includes a load
balancer that directs traffic to the API server instances evenly, ensuring that the loss of a single server
does not prevent access to the control plane. The controller-manager and scheduler, even if they are
less stateful than the API server and etcd, also need replication to provide resilience against individual
process failures.

When deploying a high-availability control plane in a decentralized edge computing environment, the
complexity increases due to broader physical distribution and possibly variable network conditions.
Research in this area requires innovations to ensure that the distributed control plane components
efficiently reach consensus while respecting the latency and bandwidth constraints typical of edge
networks. This may involve developing lightweight consensus protocols that are optimized for edge

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 33 of 75 © 2023

conditions. Another possible direction is to maintain a coherent and synchronized state across
distributed etcd clusters, possibly by employing novel data replication techniques or tailored
consistency models through eventual consistency with an acceptable convergence time, considering
edge constraints.

4.4 Scalability and performance

Kubernetes excels in managing containerized applications with its built-in scalability features. The
platform is designed to scale not only in terms of handling more workloads with the addition of more
nodes and pods but also in its control plane capabilities which oversee the operation and management
of the cluster itself. The API server, scheduler, etcd, and controller manager all play pivotal roles in the
control plane's handling of the increasing scale. Scaling out the API server instances and etcd cluster
(which stores all Kubernetes cluster data) can help maintain performance as the scale of the system
increases.

Kubernetes allows applications to scale through the use of ReplicaSets, Deployments, and StatefulSets.
It can efficiently manage the desired number of pod replicas to handle workload demands. However,
the actual performance depends on the capacity of the underlying nodes and how they are managed
in terms of pod scheduling and network configuration.

Autoscaling is another crucial aspect where Kubernetes uses the Horizontal Pod Autoscaler to adjust
pod counts based on specific metrics and the Cluster Autoscaler to add or remove nodes based on the
needs of the workload. Networking becomes even more important as the number of services and
interactions between components grows. The storage system must also maintain scalability, ensuring
data remains consistent and available during scaling operations.

Performances are directly impacted by how well all these scalability features function and by the
underlying infrastructure's performance characteristics. This becomes apparent when considering the
unique challenges presented by decentralized edge environments, where Kubernetes is expected to
operate across distributed nodes that may be geographically dispersed.

In the context of ACES, the goal will be to enable managing large numbers of smaller, more distributed
clusters while still maintaining performance and reliability. This can be done by optimizing the control
plane components for operation across widespread and potentially unreliable networks.

Another important research direction is related to advanced autoscaling algorithms to enable flexible
adaptation to the dynamic conditions at the edge. Based on historical data on resources monitoring
and workload profiling, specialized ML-enhanced techniques may anticipate workload changes and
predict the need for autoscaling to improve the turnaround time of jobs and the performance of the
system.

4.5 Multi-Cluster control and scheduling optimizations
Multi-cluster control involves overseeing multiple Kubernetes clusters as coherent parts of a larger
computational resource pool. This requires a unified control plane capable of harmonizing operations,
sharing critical configurations, synchronizing deployments, handling failover, and facilitating resource
sharing across clusters.

In the ACES context, each EMDC will be composed of a number of Kubernetes clusters. Applications
will have the ability to be executed upon the resources of multiple EMDCs, hence the coordinated
control of multiple Kubernetes clusters is an important aspect. KubeFed has been traditionally the
technique promoted by the Kubernetes community for this purpose, but since its deprecation beginning
of 2023, the community has driven its focus on various open-source tools similar to KubeFed that try
to solve various issues of multi-clustering. Tools such as nuvla, karmada, and open cluster management
for the high-level control and execution of jobs on multiple Kubernetes clusters, or submariner and Istio
for multi-cluster networking, are tools that will be explored and enhanced in the context of ACES.

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 34 of 75 © 2023

Techniques such as the ones proposed by Larsson et al. [6], enabling decentralized control in a
federated multi-cluster setting can be adopted and enhanced with tools such as nuvla.

In more detail, scheduling in a multi-cluster environment is a complex task. The scheduler needs to
have a global view to make optimal decisions about where to place workloads. It needs to take into
account a range of factors beyond what is typically considered in a single cluster, including geolocation
of clusters, network latency, data locality, edge node capacities, cluster-specific policies, and possibly
different optimization objectives.

Optimizations for multi-cluster scenarios are essential for improving the overall efficiency and
performance of Kubernetes at the edge. Enhancements in this area could involve the creation of more
intelligent scheduling algorithms, methods for more efficiently managing a large number of small
clusters, and improved paradigms for cluster federation.

Creating advanced scheduling strategies that can effectively allocate workloads across multiple
clusters needs to consider cluster load, real-time resource availability, and network topology for
optimal workload placement near the data sources, to minimize latency and maximize performance.
ACES brings forward a completely decentralized setting across the different Kubernetes clusters,
whose goal is to make use of swarm intelligence algorithms to perform the selection of resources and
workload scheduling. In ACES, the development of the actual multi-cluster scheduling algorithm will be
explored in the context of Orchestration (Chapter 6), but the development of the components to
perform the scheduling in the multi-cluster setting will be part of the resource management component.

Finally, another important direction considering multi-clustering are the data management approaches
to be used for the control plane of multiple Kubernetes clusters. This control plane needs to be
decentralized and has to maintain consistency and availability of data across multiple Kubernetes
clusters at the edge. Research must consider data replication, partitioning, and synchronization to
provide seamless data access despite the geographical distribution of clusters. Hence, a close
collaboration with Data Management (Chapter 5) is needed to effectively address the issues related to
decentralized control of multiple Kubernetes clusters.

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 35 of 75 © 2023

5 Data management
The data management component is in charge of managing all the internal data and information that
needs to be persisted by the ACES platform in order to run its operation smoothly. This component
provides a core part of the platform backend, ensuring the knowledge base is kept for every ACES
cluster and EMDC.

5.1 Managed data

The data management component will be responsible for managing all the data that will be relevant for
the orchestration and AI components to perform their reasoning and provide autopoietic qualities to
the overall system. This includes all information relevant to be captured as features, or characteristics
algorithmically employed. A complete overview of the information required by these elements, referred
to as the ACES knowledge model, is presented in D3.1. In contrast, there will be no application storage
being managed. These data elements associated to specific deployed elements will be managed as
part of the orchestration component, as described below.

The ACES knowledge model provides information about the supply, demand and runtime aspects of
ACES. The supply represents the fundamental concepts that will be used by the agents to reason about
the ACES platform elements. This includes the architecture components, physical and logical entities
presented in the environment. The demand model captures the applications that need to be presented
in the environment, deployed on Kubernetes. The model includes all additional information regarding
their requirements to function correctly, as well as the SLOs and other non-functional characteristics
that must be satisfied. Finally, the runtime model expands these concepts with temporal information
about the events and status of each element of concern. This information directly feeds from the
monitoring sources that are managed in that component.

5.2 Design requirements

The data management component is designed based on several requirements that shape its role,
structure, and underlying technologies. We briefly state here the main requirements that were specific
to this component of the architecture.

5.2.1 Nature of data

As described in D3.1, the model will be represented as knowledge graphs following the property graph
specification. There are multiple formats for representing and querying these structures, but the data
management component must support both its efficient storage, powerful query retrieval, and flexibility
to capture all the required types of data and relationships.

In addition, the runtime information represented as time series data must be captured in a mechanism
that is both fitting the monitoring component and enabling cross referencing with the graph information
model.

5.2.2 Decentralized storage solution

The ACES platform is designed to be able to operate in geographically distributed environments, with
multiple EMDCs and cluster working in an orchestrated way to provide a whole platform. For an
effective operation of such a system in a scalable and potentially privacy preserving way, the whole
ACES knowledge base will be stored using a decentralized solution. Keeping relevant data to the
geographical location where they were initially originated will greatly improve the overall scalability and
privacy. This solution will be effectively exploited in turn by the ACES reasoning components that can

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 36 of 75 © 2023

operate, as well from a decentralized model, such as the swarm agent models presented in the
orchestration component.

5.2.3 Data consistency, partition, and synchronization

At every location of the ACES system, the knowledge base must have a consistent view. Conflicts
within this view of the world would cause further problems among the different reasoning agents.
Therefore, the information required at every location will be consistent with the latest view. It is
important to note however that the data management system will not have fully replicated information
at every management node. Instead, the minimum goal is to ensure all the required knowledge is
present and consistent at each location.

Regarding potential information conflicts, it should also be noted that the information will be read at
multiple places, but there will not be multiple competing locations from which the same fact is updated.
It can be seen that metrics are originated from a single source, and runtime topology characteristics,
or changes derived from agent actions (e.g., moving one component).

Nonetheless, information must be propagated in a timely manner from the original source to the nodes
requiring it to take their own decision. For these pieces of information, the knowledge base will be
consistent data despite being distributed across different clusters. The choice of consistency model
(strong, eventual, or causal) will impact the architecture. Moreover, tools or mechanisms for data
replication and synchronization within the decentralized storage system must be chosen to maintain
this consistency while allowing for the necessary trade-offs between consistency, availability, and
partition tolerance (CAP theorem).

5.2.4 Scalability and performance

The knowledge base will have a data volume that grows in particular with respect to the runtime metrics
extracted from the multiple clusters. The storage component will be able to scale horizontally to
accommodate these needs. In order to achieve so, storage solutions and database technologies used
must be capable of scaling out across clusters without significant degradation in performance.

5.2.5 Availability and fault tolerance

The knowledge base needs to be highly available, with built-in redundancy to handle node or cluster
failures. This involves implementing replication strategies across clusters, designing for failover, and
having robust health-check and self-healing mechanisms in place. The swarm intelligence layer may
adaptively manage these aspects, rerouting traffic and workload when necessary to maintain service
continuity.

5.2.6 Data security and governance

Data privacy, security, and compliance with regulatory requirements are critical for managing sensitive
knowledge bases. This encompasses encryption for data in transit and at rest, RBAC for access control,
etc. Governance mechanisms must be established to enforce these policies across the multi-cluster
environment.

5.3 Relationship with other ACES elements

The data storage will interact with multiple other components to perform its required functions. In this
subsection, we detail what these interactions are, and their purpose.

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 37 of 75 © 2023

Runtime data is produced within the monitoring and telemetry components. Therefore, the data initially
captured at the observability and monitoring infrastructure will be eventually processed and stored by
the data management component. These values will be cross-checked against the overall graph model
to verify they belong to a known entity of the knowledge base and will be stored in the time series
storage component, where they will be made available for further postprocessing to derive from them
usable features for the reasoning components.

The main consumer of ACES data will be the orchestration component. The different agent and
reasoning models need to utilize knowledge both for training their internal models and for performing
the required diagnosis and decision-making. It is important to establish that every reasoning agent will
need a different set of features (derived from specific elements of the knowledge base). This means
that there is an interdependency in multi-EMDC ACES scenarios between the location of the different
reasoning agents, including the swarm agent components, and the data-providing storage
components. This relationship further restricts the strategy for partitioning and replicating the data, as
the locations where that information will be consumed must be taken into account for the internal
management of each knowledge element.

5.4 Candidate tools

As we have mentioned, the data management component must support two types of data: knowledge
graphs for the base concepts plus time series measurements from the observability component. While
in principle it would be feasible to opt for a single platform that stores both types of information, they
have very different characteristics and requirements, meriting that instead a heterogeneous solution
with two systems is selected.

For graph storage we consider platforms that support the property graph paradigm, as it provides a
powerful abstraction that can represent knowledge graphs. It offers a robust data model supporting
nodes and relationships, each with its associated properties, aligning well with the requirements of
complex data relationships in modern applications. The supply and demand ACES knowledge models
are defined using the NGSI-LD, with JSON-LD serialization, as is discussed in D3.1. This representation
is fully compatible with the expressivity provided by property graphs. Moreover, property graph storage
systems can take advantage of the highly expressive OpenCypher query language to retrieve
information.

For the graph storage component there are two main alternative frameworks: Memgraph and Neo4J.
Both systems provide a community edition that is open source, expanded by a commercially licensed
distribution. Another alternative is to use a general purpose NoSQL store such as MongoDB, but that
option would lack the native graph advantages of these alternatives such as the availability of a tailored
query language. Memgraph is a high-performance, in-memory graph database tailored for handling
large-scale graph data with an emphasis on property graphs. Optimized for high-throughput and low-
latency operations, Memgraph is particularly suited for real-time analytics. Regarding its scalability,
Memgraph supports replication across multiple replicas, although it lacks sharding capabilities where
the graph is partitioned among multiple nodes. Memgraph also integrates with streaming platforms like
Kafka to support scenarios requiring more timely updates. In comparison, Neo4j is the most established
graph management system, predating Memgraph for over a decade. It employs Cypher as its primary
query language, similar to Memgraph but with distinct functions and optimizations. While Neo4j is
generally efficient, performance benchmarks show a substantial advantage on this front in favour of
Memgraph. However, Neo4j's strong community support and a wide range of plugins and integrations
are significant assets. Both options present limitations with respect to the requirements of a fully
decentralized distributed solution for storing the whole supply and demand model, but they are suitable
taking into account. The decision to partition the model will be defined in coherence with the required
information and location for the different reasoning agents.

For the time series database component, InfluxDB is an ideal candidate for the storage. This database
is specialized on handling time-stamped data, which includes the metrics and events recorded in the

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 38 of 75 © 2023

ACES runtime model. Its core strengths lie in high write and query throughput, essential for real-time
analytics on time series data. InfluxDB's efficient data compression algorithms and retention policies
ensure high scalability for managing the potentially large amount of data generated by the observability
and monitoring component. Additionally, its native support for time-centric functions and queries will
ease the access of that information for both the data processing functions developed in WP3, as well
as the reasoning components that need to utilize these features.

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 39 of 75 © 2023

6 Orchestration
The management of the edge infrastructure, the so-called edge continuum, presents a dynamic
computing landscape. Within the edge continuum, intelligence is spread across the edges forming a
distributed environment. This will make the edge more autonomous and fine-grained in local decision
making within a regional context and make it more independent from a central coordination point.
Resource allocation, workload scheduling, and data management are challenges that increase the
complexity of the edge orchestration and edge-cloud interaction. Despite the growing interest in edge
computing, there remains a notable research gap in developing comprehensive solutions that efficiently
manage edge interactions [21].

This section introduces a novel component, the so-called swarm intelligence component that combines
agent-based modelling and swarm intelligence as an emergent orchestrating mechanism to address
these complexities. Agent-based modelling and swarm intelligence are known for providing advantages
in simulating complex systems with autonomous entities including adaptability, scalability and
robustness. They utilize collective decision-making processes as observed in nature by swarms of
insects, fish or birds [22]. This framework is at the core of the architecture, required to manage a
powerful edge infrastructure, a mesh of Edge Micro Data Centers (EMDCs) capable of processing big
data and AI at the edge-to-edge environment independent from a distant cloud. The EMDCs operate
autonomously in serving local demand for edge-cloud services and creating regional collaborative
federations to provide edge services. The advantages of creating an autonomous powerful edge are
to minimize data traffic between edge to a centralized cloud, reduce costly data extraction for
centralized clouds, enhance edge-to-edge data traffic, reduce round trip latency of inference, improve
resilience and reduce the fall-out from security breaches [21].

Central to our approach is the integration of autopoietic characteristics that include the emergent
intelligence of self-organization, regeneration, and regulation. These characteristics enable the system
to dynamically adapt and optimize in response to changing conditions. AI-driven optimization methods
(including swarm intelligence) in cloud infrastructure are successfully being researched (see
Deliverable D4.2 for more details). Among recent notable examples of utilization of swarm intelligence
to optimize complex systems, is the work of Schranz et al. [23], where authors successfully utilize
bottom-up job shop scheduling applying swarm intelligence algorithms for optimizing a large
production plant. Thus, we propose the edge continuum with its characteristics and limitations as a
novel field of application for swarm intelligence [21].

In the edge-continuum, we work on two levels applying self-organization using swarm intelligence:

1. Multi-cluster orchestration comprises the distribution of the demand on multiple clusters in one
EMDC.

2. Inter-cluster orchestration comprises the emergent workload scheduling of one cluster in one
EMDC

This numeration also reflects the efforts put first in level 1. and then as an extension in level 2.

6.1 Background

The main idea of swarm intelligent behaviour is that it should be able to produce a complex and scalable
way of acting in a group, starting from simple and local rules/computations. In nature, the behaviour of
social animals appears to be adaptive, robust, and scalable [21]. These are desirable properties of a
system that swarm intelligence design precisely aims to replicate in technical systems.

Adaptability represents the ability of a swarm to adapt to dynamic changing environments and to cope
with different tasks. By exploiting robustness, a swarm can cope with disturbances and failures, such

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 40 of 75 © 2023

as the loss or the malfunctioning of individual agents. Scalability gives a swarm the ability to perform
well with different numbers of swarm members and with differently sized problems. Adding or removing
swarm members does not lead to a significant decline in performance, as long as their number does
not fall below a critical mass (explained below). A collection of individuals can be considered a swarm
if it exhibits a verifiable swarm behaviour, including all characteristics mentioned above.

Two crucial aspects should be noted [21]: Critical mass (briefly mentioned above) and super-linear
scaling of the system performance. These system features, which can be seen as mandatory for a true
swarm system, have been discussed in current literature only marginally.

Critical mass: The advantages of SI (Swarm Intelligence) algorithms can only be exploited if a critical
mass of swarm members is reached. In natural swarm systems, such as honeybees' or cockroaches'
collective aggregation decisions [23, 24] as well as in autonomous robotic swarms [43], it was found
that the number or density of agents plays an important role in the swarm performance and that swarm
systems below a critical number of agents do not function well as a collective.

Such a critical mass threshold can be illustrated by the example of the formation process of a sand
dune: given three grains of sand, together they do not form a sand dune, although they must obey the
same physical laws as the billions of sand grains that form a massive dune. This is because the order-
generating feedback loops do not impart any effect strongly enough to overcome the system's noise
that drives it towards the disorder. In general, SI applications do not work well below a critical mass,
but increasingly well above this threshold up to a size where other effects reduce swarm performance
again. It should be noted that it is not yet clear what this critical threshold (the minimum number of
swarm members) should be [22].

Super-linear performance scaling: When scaling up beyond the critical mass, it is expected that in any
collective system, a large group of agents will achieve more work in total than a smaller group at the
same time. In a true swarm, the interactions between the swarm members should exhibit super-linear
characteristics, i.e., the effect of the overall system is required to be more than the sum of the effects
of its individual parts. Examples are described for honeybees [23], for robotic swarms [25, 26], and for
multi-processor systems [27]. The overall system is a well-designed swarm application only if the
synergies of cooperation boost each individual swarm member's performance and the local control
algorithms of the swarm members are well-designed. This means that within the bounds of feasible
swarm sizes, not only the efficiency of the whole swarm as a group but also the efficiency of each
single individual must increase. We refer to this as the swarm effect [21].

Figure 9 illustrates the expected performance scaling properties of three different systems with C1 –
C4 as fictive threshold numbers for agents in a swarm:

a. The performance of a hypothetical perfectly scaling disembodied algorithm or a swarm model
that does not care for physical constraints at all, which will scale linear with O(n) as the dashed
line, where n is the number of swarm members.

b. The performance scaling of an algorithm that shares resources with other algorithm instances
or a swarm model that considers space as a shared resource for agents, which will scale O(log
n) as the dotted line.

c. The performance of a physically embodied swarm system operating in the real world as the
solid hat-shaped curve [21].

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 41 of 75 © 2023

 Figure 6.1: Swarm scaling performance

6.2 Multi-Cluster orchestration

In the multi-cluster environment, we consider multiple clusters, thus multiple swarms. On this level the
swarm agents represent the demand and the clusters. As in the inter-cluster orchestration, the demand
swarm agents represent workload behaviours at the microservice level. The cluster swarm agents, on
the other hand, represent the individual clusters of an EMDC that is characterized with the resources
available in each cluster. By the implementation of swarm algorithms, these agents collaborate within
an Edge Micro Data Center (EMDC) environment, orchestrating processes such as workload placement,
storage management, and caching optimization.

Figure 6.2: Multi-cluster orchestration swarm agents

6.3 Inter-Cluster orchestration

 For the inter-cluster orchestration, the key to our approach is the use of swarm agents, representing
demand and supply entities. Demand swarm agents represent workload behaviours at the microservice

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 42 of 75 © 2023

level (or pod level if we directly refer to Kubernetes), ensuring workload scheduling optimization. On
the other hand, supply swarm agents represent node dynamics. These agents collaborate within an
EMDC cluster, orchestrating processes such as workload placement, storage management, and
caching optimization (see Deliverable D3.1 for more details on agent-based modelling). Exemplary
swarm algorithms, the hormone and ant algorithms (details in Deliverable D4.2) are utilized to
accomplish the desired functionality of the system. For example, demand swarm agents deploy
synthetic hormones to communicate their requirements and priorities. Supply swarm agents detect
these hormones to make informed allocation decisions. The ant algorithm dynamically optimizes
workload-node assignments by simulating the foraging behaviour of ants, depositing pheromones to
guide subsequent decisions [28]. The agent types are shown in Figure 6.3.

Figure 6.3: Inter-cluster orchestration swarm agents

6.4 Innovations through swarm intelligence

An innovation that the ACES project will introduce is the use of AI/ML to achieve autopoietic behaviour
in individual agents, on multiple layers. Specifically, regarding swarm agents, ACES will make the
coalition's behaviour adapt autonomously to changes in the operating environment. To do this, AI/ML
algorithms will be used to enable the swarming algorithms to calibrate and update their
hyperparameters autonomously.

Hyperparameters in swarming algorithms control the overall behaviour of the coalition (i.e., intensity of
hormone attraction, quantity of generated hormones, mobility of hormones, etc.) and are usually
chosen through random/grid searches, heuristics, or trial and error. In ACES, on the other hand, we will
implement AI/ML tools (such as Bayesian learning or Reinforcement Learning) that, by monitoring the
performance of KPIs, will be able to select the best value for the hyperparameters.

Furthermore, once an initial configuration of hyperparameters is found, the proposed algorithms will be
capable of quickly adapting to real-time changes in the context, using the previous configuration as a
starting point for recalibration.

More details on this are given in D3.1 and D4.2. Future deliverables D3.3. and D4.3 will explain the
procedure in depth.

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 43 of 75 © 2023

7 Networking
This Chapter aims to present a general overview of the ACES network architecture. The ACES network
will be intelligent through an advanced closed-loop Software-defined Networking (SDN)-based
network control infrastructure that couples monitoring with machine learning-based analytics. It will
provide a range of new functionalities targeting edge-based infrastructures, including in-network
authentication and intrusion detection for security, network acceleration for performance, and
advanced forms of in-network computation to assist the swarm-based ACES intelligence.

7.1 Design requirements

From the networking point of view, the design of ACES is driven by eight main requirements.

Service connectivity: A critical aspect of the ACES edge-computing platform is the establishment of
robust service connectivity. This goal involves configuring seamless communication between service
instances while prioritizing Quality of Service (QoS) requirements, namely, ensuring low latency and
high throughput to meet the platform's objective of enhancing intelligence at the edge.

Network observability: ACES requires high operational visibility to gain deep insights into the
performance and behaviour of the underlying infrastructure. This visibility not only aids in proactive
issue detection but can also enable efficient resource allocation, contributing to the overall stability
and reliability of the edge-computing system. ACES network approach to this problem entails
incorporating in-network telemetry mechanisms.

High throughputs and low latencies: Meeting the demands of edge computing requires high network
throughputs and low latencies. This optimization ensures that data traverses the network swiftly and
efficiently, enabling the platform to deliver timely and responsive intelligence to edge systems. ACES
achieves this by incorporating in-network acceleration mechanisms.

Closed-loop network control: ACES network control should enhance the platform's agility and
responsiveness to varying workloads and network conditions. Towards this goal, ACES will integrate
network monitoring with machine learning-based analytics to form a closed-loop control. This synergy
empowers the platform to dynamically adapt to changing conditions, automatically adjusting
configurations and resource allocations based on real-time insights.

Scalability: The scalability of the ACES network platform requires a distributed control architecture.
This design allows the platform to seamlessly expand its capabilities to accommodate a growing
number of edge devices and service instances. By distributing control functions across the network,
ACES ensures scalability without compromising performance, supporting the evolving needs of edge
computing deployments.

No single point of failure: Redundancy is a fundamental consideration for ACES to guarantee
uninterrupted service. The platform adopts a design philosophy with replicated control, eliminating any
single point of failure. This redundancy ensures continuous operation even in the face of hardware or
network component failures, enhancing the reliability and resilience of the edge-computing
infrastructure.

Network security: Security is paramount in the design of the ACES platform. Our aim is to incorporate
comprehensive security features into the networking sub-system to ensure that ACES is secure by
design. We will implement robust network security measures employing AI mechanisms to safeguard
against potential cyber threats. We leave details on this specific requirement to Chapter 10.

Multi-Cluster Networking: The multi-cluster networking solution must seamlessly integrate
Kubernetes clusters and programmable network switches while supporting dynamic scaling and pod
mobility. This will be brought through technologies such as Submarriner or Istio service mesh.

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 44 of 75 © 2023

7.2 Network architecture overview

The network architecture of the ACES edge-based platform reflects a design that includes SDN
principles, control-loop enhancements, and programmable data plane devices. This holistic approach
aims to provide a foundation for adaptive, intelligent, and efficient edge networks.

The ACES network architecture embraces the SDN paradigm, a departure from traditional networks
that rely on dedicated hardware devices like routers and switches for network traffic control. In ACES,
the forwarding state in the data plane is managed by a remote control plane, introducing a decoupling
between the two planes that enhances adaptability and agility. The SDN approach within ACES further
incorporates a control-loop mechanism, seamlessly integrating network telemetry and machine
learning-based analytics. This integration allows ACES to respond dynamically to changing network
conditions and harness insights derived from analytics for informed decision-making, creating a
symbiotic relationship between network control and intelligent data analysis.

Our SDN-based design enables the dynamic orchestration of ACES multi-cluster networking. We
resort to overlays to allow for dynamic scaling and mobility of pods across clusters. To enable seamless
interfacing of the Kubernetes multi-cluster with our network switch infrastructure, we plan to explore
existing and develop new Container Network Interface (CNI) plugins. Furthermore, our design will
include isolation and segmentation mechanisms between clusters for security and operational
flexibility. Finally, we integrate network switch monitoring into Kubernetes monitoring tools, ensuring
comprehensive visibility and control over both the Kubernetes and network switch environments.

ACES takes a multifaceted approach to intelligence within its network by leveraging programmable
data plane devices, including programmable switches and SmartNICs/DPUs. This strategic integration
goes beyond conventional network architectures, enabling ACES to achieve enhanced intelligence
through in-network telemetry, accelerated network functions, integrated in-network security, and
support for swarm-based orchestration mechanisms. Programmable switches and SmartNICs/DPUs
allow the platform to adapt and evolve, allowing for dynamic adjustments in response to varying
workloads and operational requirements. This level of programmability not only enhances the overall
intelligence of the ACES network but also ensures a scalable and efficient edge infrastructure capable
of meeting the diverse demands of modern edge computing applications.

7.3 Control plane

In contrast to traditional networking models where control functions are distributed across individual
devices, ACES opts for a logically centralized control model following an SDN approach. This choice
allows for unified and programmable control over the network, facilitating efficient resource allocation,
dynamic configuration changes, and seamless adaptability to the evolving demands of edge computing
environments. The SDN-based logical centralization enables the intelligence ingrained in the ACES
network control architecture.

ACES prioritizes fault tolerance and scalability in its network control plane architecture. For fault
tolerance, ACES replicates the control plane. In a replicated control plane, multiple instances of the
SDN controller are deployed across different nodes, working in tandem to manage network operations.
If one instance fails (due to hardware issues or other unforeseen circumstances), the remaining replicas
continue to operate seamlessly. This redundancy minimizes the risk of a single point of failure, ensuring
the reliability and continuous operation of the network control even in the face of unexpected events.

For scalability, ACES distributes the control plane. As the ACES edge infrastructure grows with
additional EMDCs, the controller can efficiently manage the increased load by distributing control
functions across multiple instances. This balancing of efforts ensures that the network control remains
responsive and can effectively handle the evolving demands of a dynamically expanding edge
environment.

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 45 of 75 © 2023

The ACES network control plane features a sophisticated closed-loop mechanism, integrating SDN
principles with Machine Learning (ML) analytics. This fusion creates a dynamic and intelligent control
system capable of autonomously adapting to changing network conditions. The closed-loop
mechanism continuously monitors the network, gathering performance and traffic pattern data. This
data is fed into an ML analytics platform, enhancing the system's ability to predict, analyse, and
optimize network behaviour.

In summary, the network control plane of the ACES edge-based platform is characterized by its SDN-
based logical centralization, replicated control for fault tolerance, distributed control for scalability, and
a closed-loop mechanism augmented with ML-based analytics. This approach establishes the
foundation for a resilient, scalable, and intelligent network control system tailored to the dynamic nature
of edge computing environments.

7.3 Data plane

The network data plane of the ACES edge-based platform integrates high-performance
programmable data plane devices, such as programmable switches, Data Processing Units (DPUs),
and/or Intelligence Processing Units (IPUs). This integration aims to enhance multiple facets of the
edge environment. For instance, leveraging programmable switches' capabilities fortifies security by
expediting intrusion detection processes. Network performance may benefit from the direct execution
of AI/ML algorithms and cryptographic operations in the data plane, reducing latency and improving
overall efficiency. Furthermore, offloading specific application and system functionality onto
programmable devices can elevate ACES infrastructure control (e.g., by running swarm mechanisms
on network devices) and boost service performance.

ACES includes fine-grained network telemetry as a cornerstone of its data plane architecture.
Examples include the implementation of in-network sketches and per-packet statistics computations,
providing comprehensive insights into network behaviour and performance. In addition to traditional
telemetry methods, ACES leverages in-band network telemetry data to refine the monitoring
capabilities further, by gathering telemetry metadata for packets traversing the network (e.g., explicit
information on packet routing paths, latency experienced by packets, and in-network congestion
information). This level of granularity enables real-time monitoring and analysis of network traffic,
facilitating the identification of potential bottlenecks, congestion points, and security threats. These
advanced telemetry mechanisms help support data-driven decision-making and proactive
management of network resources.

The ACES data plane enables the acceleration of critical network functions, including load balancers,
Network Address Translators (NATs), proxies, firewalls, and more. ACES explores innovative program
synthesis techniques to address the inherent software engineering challenges of supporting its diverse
data plane platforms. Different techniques will be explored, based on formal methods like symbolic
execution or AI/ML approaches, to enable the automatic generation of optimized code for specific
target platforms. This approach enhances the efficiency and flexibility of the ACES data plane, ensuring
that it can seamlessly adapt to the diverse requirements of edge computing workloads.

In summary, the network data plane of the ACES edge-based platform leverages recent programmable
network hardware to deliver high performance, security, and service efficiency. Integrating fine-
grained network telemetry and function acceleration directly in data plane devices collectively forms
the foundation for a robust, performant, intelligent network architecture.

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 46 of 75 © 2023

8 Monitoring and observability

When considering complex distributed architectures—spanning multiple cluster or edge
environments—the ability to gain deep insights into the performance, health, and interactions of these
clusters, nodes, and constituent workloads becomes paramount. Observability represents an approach
to analysing and optimizing systems by providing a real-time perspective on all operational data related
to applications and infrastructure. Observability lays the groundwork for the ACES platform to
proactively identify and address issues to ensure seamless operations and optimal resource utilization.
However, the complexities of multi-cluster or edge environments, such as the ones in ACES, change
the way of comprehensively viewing system behaviour, dependencies, and potential bottlenecks and
subsequently detecting, diagnosing, and resolving fatal errors.

The monitoring and observability framework is a vertical ACES component, spanning the overall ACES
architecture and its constituent components. The component provides monitoring and observability
aspects to the different layers of the software stack on various levels (i.e., edge, application, network,
and cloud layer). It encompasses monitoring, logging, tracing, metrics collection, alerting, anomaly
detection and analysis, visualization, and performance analysis. Due to its inherent distributed nature,
the monitoring and observability framework considers hierarchical and distributed monitoring and
storage, including across multiple clusters.

In this section, the monitoring and observability state-of-the-art is described, which serves as a
foundation for the proposed monitoring and observability requirements and architecture. Next, the
requirements with the resulting architecture are detailed and related to other ACES components in light
of federated/distributed multi-cluster monitoring. Moreover, the monitoring and telemetry data, as well
as their acquisition aspects, are discussed. Finally, considerations on asset runtime, fine-grained
network, periodic and event-driven observability and monitoring are presented.

8.1 Monitoring and observability in modern systems

The notion of observability states that a system is observable when the root cause of issues or events
can be straightforwardly detected without additional investigation. That is, the system’s observability
is delineated by the capacity to understand its complex internal state based on sufficient measurable
external outputs. On the other hand, monitoring aims to assess the system’s state via the collection,
measuring, and analysis of the system’s outputs. As monitoring generally considers only a predefined
set of measurements, its scope is limited to detecting only a specific set of eventualities. This implies
that with the complexity of modern systems, observability permits the so-called white-box monitoring
[31], i.e., monitoring where the system internals are known and comprehensively report their current
state is required, as opposed to traditional black-box monitoring, which primarily observes the system’s
state from outside.

With the upswing of cloud and edge computing, modular distributed systems composed of flexible
containerized services are becoming ubiquitous. Such workloads may be extended with a behaviour
logic description that characterizes its internal behaviour and improves observability [32]. Moreover,
as distributed workloads and systems generally have a complex execution path—with requests
crossing multiple services or compute nodes—, a need for capturing resulting traces emerges. In [33],
a generic methodology for capturing such requests is proposed. Another crucial aspect of observability
is identifying the performance of distributed systems. To this end, a mixture of benchmarking and
simulation approaches have been applied [34]. Finally, to provide actionable information to the
operator, detecting and explaining system deviations is required. Several approaches to automated
detection of anomalies have been proposed, such as in [35], as well as root cause analysis, as in [36].

Whereas the area of monitoring and observability has been thoroughly explored and with many
industrial production systems already in place, a number of challenges remain. In [37], a qualitative
analysis observed the following contemporary challenges in distributed system monitoring:

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 47 of 75 © 2023

● Increasing dynamics and complexity of distributed systems, especially due to the emerging
trends of microservice architectures and cloud computing, which are not manually manageable.

● Heterogeneity of distributed systems, which often constitute of legacy components and
consider multitenancy.

● Problems in culture and mindset, which may result in monitoring pitfalls, such as isolated
monitoring and lack of collaboration/communication.

● Distribution of monitoring aspects without employing a centralized system-wide point of view,
lowering the transparency of impacts.

● Extensive amounts of data, which may impact the prioritization and ability to draw conclusions
due to the complexities arising from overwhelming information.

● Expert dependency and lack of experience, time and resources, which may hinder the timely
and comprehensive diagnosis of issues and imply reactive as opposed to proactive monitoring
and observability.

● Insufficiently defined non-functional requirements, such as availability and performance,
resulting in inadequately measured and monitored context.

● Applying reactive instead of proactive implementation, often triggered by a failure in production
systems, resulting in ad hoc solutions as opposed to systematic solutions.

The major features of a monitoring and observability system should thus cover the aspects of data
requirements and related measurements, basic functionalities and key characteristics [8] as outlined
in the following. The three main data types (logs, metrics, traces) provide the operators with the so-
called golden signals of observability, which serve as a basis for alerting, troubleshooting and
tuning/capacity planning. Generally, the following telemetry measurement types are considered:
latency, traffic, errors, and saturation. Building upon the measurements, the observability system
should provide three key functionalities: correlation, i.e., linking events to other related events,
topology, i.e., providing a graph of dependencies, and incident response, i.e., automated handling of
remediation. The key characteristics of observability systems are connected context, easier and faster
exploration, a single source of truth, capturing arbitrary wide events, and decoupling data sources from
sinks [38]. Moreover, [37] denotes the following requirements in employing observability in distributed
systems: a holistic approach, management from a business and user experience view, the definition of
core metrics from a customer-centric view, governance, use of a unified monitoring platform, detection
of normal and abnormal patterns, among others.

Observability and monitoring in practice have been enabled via various solution implementations,
covering aspects from monitoring data collection to visualization. In Table 8.1, we provide an overview
and comparison of state-of-the-art open-source solutions. The solutions generally target specific
monitoring scenarios, such as networks or applications. Most solutions provide some form of
visualization capacities and additionally enable integration with standard telemetry/monitoring
ecosystems. Moreover, big data and scalability support is generally provided out-of-the-box. Finally,
some solutions provide advanced analysis, anomaly detection and alerting functionalities.

Table 8.1: Overview of monitoring and observability solutions

SOLUTION SCOPE MAIN FEATURES

Apache
SkyWalking1

Application
performance
monitoring

− End-to-end distributed tracing, service
topology analysis

− Log management pipeline, metrics aggregation
− Alerting and telemetry pipelines
− Integration with telemetry ecosystems
− Big data scalability

1 https://skywalking.apache.org/

https://skywalking.apache.org/

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 48 of 75 © 2023

Consul2 Application
network

observability

− Service discovery mechanism
− Metrics collection and topology visualization
− Integration with telemetry ecosystems

Kibana3 Observability
data analytics

− Data ingestion and enriching
− Search and analysis of data and visualization
− Full and multi-stack monitoring
− Automated alerting
− High scalability and resiliency

Cilium4 Network
observability

− Service map visualization
− Network flow logs
− Metrics and tracing collection/export
− Advanced network protocol visibility

Prometheus5 Monitoring
system

− Big data scalability
− Standardized query language
− Alerting and visualization

Integration with telemetry ecosystems

OpenTelemetry6 Telemetry
collection

− Collection and export of traces, metrics, logs
− Support for system instrumentation
− Standardised

Monasca7 Monitoring
system

− High scalability and performance
− Multitenancy support
− Integration with OpenStack
− Metrics processing and querying

Streaming alarm and notification engine

Sysdig8 System/container
observability

− Native inspection of physical/virtual machines
and containers at OS-level, considering storage,
processing, network, and memory subsystems

− Trace collection, filtering
− Unified and customizable user interface

Grafana9 Observability
platform

− Visualization and querying of data
− Anomaly detection and alerting
− Integration with telemetry ecosystems
− High scalability and performance

Jaeger10 Distributed
tracing platform

− Distributed workflow monitoring
− Analysis of service dependencies and

visualization
− Integration with telemetry ecosystems
− High scalability and performance

2 https://www.consul.io/
3 https://www.elastic.co/kibana
4 https://cilium.io/
5 https://prometheus.io/
6 https://opentelemetry.io/
7 https://wiki.openstack.org/wiki/Monasca
8 https://sysdig.com/
9 https://grafana.com/
10 https://www.jaegertracing.io/

https://www.consul.io/
https://www.elastic.co/kibana
https://cilium.io/
https://prometheus.io/
https://opentelemetry.io/
https://wiki.openstack.org/wiki/Monasca
https://sysdig.com/
https://grafana.com/
https://www.jaegertracing.io/

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 49 of 75 © 2023

Fragmenting of solutions and lack of interoperability present a burden in modern observability and
monitoring. In addition to vendor lock-in when applying proprietary solutions, a considerable risk is
represented by the compatibility of different monitoring and observability solutions, which hinders the
ability of composing comprehensive and connected systems. To this end, various initiatives have
emerged aiming to define interoperable and standardized specifications and implementations. Notably,
to ensure portability and interoperability in telemetry, a set of telemetry standards and specifications
have been defined in the OpenTelemetry specification [39] that provides a set of rules, guidelines, and
requirements that the resulting implementations should follow. The specifications define API, SDK, as
well as data model specifications. Moreover, an Observability Query Language Standard (QLS) [40]
workgroup in the Cloud Native Computing Foundation (CNCF) has been recently established to define
a standardized query language for observability data. Additionally, standardization activities took place
to establish a standardized Prometheus remote-write protocol [41] for transmitting metrics data. To
tackle establishing a common data model for propagating context information enabling distributed
tracking scenarios, a W3C recommendation on trace context was defined [42].

8.2 Requirements

The design requirements for the monitoring and observability component outline the desired
specifications and functionalities of the related components. This information is crucial for the definition
of the architecture and provides guidance throughout the subsequent system development stages.
The requirements were gathered by reviewing state-of-the-art technological and non-technological
aspects outlined in Section 8.1, as well as considering the ACES requirements, architecture, and use
cases defined in this document. Table 1 presents a compilation of these requirements, including both
functional and non-functional aspects. Furthermore, these requirements are linked to the architectural
elements described in the next section.

Table 8.2: Monitoring and observability module requirements

NAME GROUP DESCRIPTION RELATED
SUBMODULE

Metrics, traces,
and log collection

Functional

The solution should enable the
collection of metrics, traces, and logs
of ACES components, infrastructure,

and workloads.

All

Data collection
mechanisms

The solution supports several data
collection mechanisms, such as
pull/push or custom protocols.

Retrieval Worker,
Push Gateway,
Data Forwarder

Anomaly
detection and

alerting

The solution should implement real-
time log/metric analysis and anomaly

detection on monitored data and
related alerting of implicated entities.

Anomaly
Detection, Alert

Manager

External anomaly
detection

The solution should support
integration with external anomaly
detection and alerting solutions.

Anomaly
Detection, Alert

Manager

Automated target
discovery

The solution should support
automated configuration and the
addition of monitored targets.

Service
Discovery

Mechanism

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 50 of 75 © 2023

Data retrieval and
aggregation

The solution should implement
interfaces for monitoring data retrieval
and aggregation.

Server, Data
Forwarder

Data analysis and
visualization

The solution should support data
analysis and visualization.

Data Analysis,
Export and

Visualization

External
distributed

storage

The solution should enable the
integration of external distributed
storage systems.

Internal
Database,
Storage

Monitoring
federation

The solution should enable federation
among distributed monitoring
instances.

Data Forwarder,
Storage

Standardized
query languages

The solution should support data
retrieval, aggregation, and analysis via
standardized query languages.

Server

Large data

Non-
functional

The solution should support large data
processing.

All

Open standards The data models, formats, and APIs
should be based on established open
standards.

All

Real-time
processing

The solution should enable low-
latency real-time processing and
analysis.

All

Modularity and
extensibility

The solution should be modular and
extensible.

All

Interoperability The solution should be interoperable
with modern as well as legacy
monitored targets and systems.

Push Gateway,
Data Forwarder

Scalability The solution should be horizontally
and vertically scalable.

All

Constrained
environments

The solution should support
constrained edge environments.

All

8.3 Monitoring and observability architecture

To effectively analyse and develop complex systems, a structured system architecture is necessary.
This architecture outlines the modules and their interactions, helping with experimentation, validation,
and reasoning about the system. In Fig. 8.1, we present the ACES monitoring and observability
architecture, which is built upon the analysis of state-of-the-art platforms and standards as well as
system requirements provided in Sections 8.1 and 8.2, respectively. The proposed generic architecture
may be applied to implement custom and specialized metric pipeline architectures, such as the one
defined in D3.1 - ACES Data and Knowledge Model.

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 51 of 75 © 2023

The ACES Monitoring and observability architecture targets decentralized system observability,
observability data management, and alerting. The architecture consists of the main subcomponents
Monitoring and Observability Core, Push Gateway, Alert Manager, and Data Forwarder, which provide
core functionalities of monitoring and telemetry data collection, storage, forwarding, querying, and
alerting to ACES workloads or other ACES components. Additionally, auxiliary subcomponents enable
functionalities such as service discovery or data analysis, data export, and visualization. In the
following, we provide additional details on the subcomponents.

Figure 8.1: Monitoring and observability architecture

Monitoring and Observability Core represents the primary subcomponent of the architecture, as it is
the part of the system that conducts the actual monitoring. It consists of the following components:

● Storage: A local time series database optimized to store vast volumes of timestamped data.
This database is used to store all collected monitoring and telemetry data.

● Retrieval Worker: A component that periodically pulls metric and telemetry data from workloads,
Push Gateway or other components and saves them to storage.

● Server: An API server that accepts queries and retrieves the requested data from the Internal
Database. This component is the primary interface for data analysis, export, or visualization
workflows.

Push Gateway	allows the Monitoring & Observability Core to receive monitoring and telemetry data via
an alternative push mechanism. The workloads may push their data to the gateway, which is then
periodically queried via the Retrieval Worker. This mechanism is especially relevant for short-lived
workloads.

Data Forwarder enables pulling or pushing monitoring/telemetry data from and to other ACES
components or tools via custom pluggable protocol and format extensions. For instance, the Data
Forwarder subcomponent may be applied to implement additional metric scraper or streaming modules.
Moreover, the Data Forwarder subcomponent may be applied to establish federation among the
distributed monitoring instances. Additional data aggregation steps may be applied while forwarding
data.

Anomaly Detection submodule implements real-time log and metric analysis to enable early detection
of system issues and transgressions. In case of an anomaly, the concerned entities are notified. The
submodule may be extended with external cognitive components.

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 52 of 75 © 2023

The Alert Manager component handles the alerts sent by the Anomaly Detection subcomponent or
other applications. It enables automatic alert routing and forwarding, as well as more complex
operations, such as alert deduplication, grouping-related alerts, or rule-based alert suppression.

Service Discovery Mechanism is a mechanism that allows the Monitoring & Observability Core to
discover and monitor targets automatically, i.e., with no manual configuration. This proves especially
useful when working in environments where the number of running instances may be rapidly changing.
The Service Discovery Mechanism may support one or more discovery methods, such as static
discovery files, DNS-based discovery or other orchestration-specific discovery.
	
Data Analysis, Export and Visualization implements advanced data analysis and retrieval methods via
graphical user interface dashboarding toolboxes or data browsing and analysis solutions. The data are
retrieved from either the Internal Database or Server component using a standardized query language.

ACES Asset represents any monitorable ACES workload, ACES cluster, ACES component or ACES
infrastructure element in the ACES platform.

Communication Channels define external messaging means capable of displaying notifications, e.g.,
dashboards or communication platforms.

8.3.1 Federation and multi-cluster monitoring

There are several approaches to implement monitoring and observability when considering multiple
clusters within ACES. One option is to apply a single cluster with a monitoring instance to scrape the
data from other clusters or to scrape the data from remote metrics endpoints. The advantage of this
approach is simplicity, as there is only one monitoring instance in a central cluster that collects data
from multiple clusters. Another advantage is the fact that monitoring, alerting, and analysis are
centralized, thus enabling a unified view of the system. On the other hand, there are several
disadvantages, including a single point of failure (due to centralization). Additionally, latency in data
ingression may impact the speed at which metrics are collected, potentially leading to delayed or
inaccurate monitoring. A somewhat similar approach is based on a push mechanism; the remote
clusters may remotely write the data directly to the centralized monitoring instance.

Alternatively, a range of monitoring federation principles may be applied. Fundamentally, we distinguish
two types of federation approaches targeting different goals: query and scrape federation. Such
systems are more complex as they require a monitoring instance in each monitored cluster. The
scraping federation considers a monitoring instance in the central observability cluster that periodically
scrapes the monitoring instances in remote clusters. Whereas this again enables a unified view of the
system and additionally improves availability due to distributed redundancy, there is considerable data
duplication. Moreover, additional latency ensues due to the periodic scraping delay on every level of
the hierarchy. To enable federated querying, an implementation that extends the monitoring instance
with a query sidecar may be adopted. Using this approach, the data stays in a local cluster while a
comprehensive view of all clusters, as in the centralized system, is enabled. Nevertheless, if a remote
cluster is unreachable, consequently, the data are unreachable. Queries can additionally experience
extensive delays if large amounts of data have to be transferred ad hoc, especially in edge
environments.

8.3.2 Relationship with other ACES components

The monitoring and observability component spans the overall ACES platform and components and, in
this, relates to all ACES workloads, ACES components, or ACES infrastructure elements in the ACES
platform to provide monitoring and observability aspects. Additionally, a specific integration point with
the Distributed Storage component is identified for data storage functionalities and with the Security
and Privacy component for authentication, authorization, auditing, and secure storage functionalities.
Primary consumers of the Monitoring and Observability component are analysis and AI components
that require knowledge discovery or implement proactive management based on the operational

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 53 of 75 © 2023

monitoring insights, such as Resource Management, Cognitive Engine, Networking or Orchestration
components. Integration capabilities are provided via the Data Forwarder subcomponent.

8.4 Monitoring and telemetry data

The ACES project will provide monitoring and observability related to the different levels of the
software and hardware stack, targeting various layers, such as the edge layer, cloud layer, application
layer, and network layer. In addition to workload, component, and node observability, an important
aspect is network observability. High operational visibility is required to gain deep insights into the
performance and behaviour of the underlying infrastructure, which aids proactive issue detection,
optimization, and related efficient resource allocation. To comprehensively characterize the
infrastructure and workload execution context, the following types of monitoring and telemetry data
(also referred to as signals) will be collected:

● Traces are an essential concept in understanding how requests and traffic move through the
infrastructure, components, workloads, and services. They help understand the entire path of
the process and can be used to identify bottlenecks and errors.

● Logs are simple timestamped text records that may or may not be structured. Historically, logs
are the most widespread form of system observability. They are almost always used in legacy
software and systems due to widespread built-in support.

● Metrics are runtime measurements of the state of the system. They are used to monitor the
health of the system and are typically used to trigger alerts.

As the monitoring and observability component stores all data as time series streams of timestamped
values belonging to the same data type and set of labeled dimensions, every time series is uniquely
identified by its data name and optional key-value pairs where the key name indicates the parameter
that is being monitored. Additionally, the data may have supplementary attributes which provide further
metadata, such as data description. The implementation of the monitoring framework will consider four
main metric types:

● Counter: A counter is a cumulative metric that represents a single monotonically increasing
counter whose value can only increase or be reset to zero on restart. The counter is generally
used for metrics that measure the number of requests, errors or completed tasks.

● Gauge: A gauge represents a single numerical value that can either increase or decrease. Gauge
is used for metrics that measure CPU temperature, memory usage or the number of running
processes.

● Histogram: A histogram samples observations and counts them in configurable buckets. It also
provides a sum of all observed values. Histograms are used for metrics that measure request
duration or response size.

● Summary: Summary is similar to histograms with the extension that the summary can calculate
configurable quantiles over a sliding time window.

The definitive set of anticipated metric data types is provided in D3.1 - ACES Data and Knowledge
Model and subsequent deliverables.

8.5 Data acquisition methods

Data acquisition in monitoring and observability refers to the processes of monitoring/telemetry data
ingression and retrieval. In the following, the most common methods and related considerations are
presented.

Pulling is the primary data collection mechanism, supported by the Retrieval Worker. Its flow is as
follows: the monitored assets must expose their metrics on a predetermined endpoint, generally named
“/metrics”; the Retrieval Worker then scraps these endpoints via a request, and the content is stored in
the Internal Database. One advantage of this approach is the simple addition of additional monitored
assets due to the light configuration change requirements or even no extra configuration in case a
discovery mechanism is applied. Additionally, identifying when a monitored asset is unreachable is
reliable and asset metric data are accessible to other authorized entities that can access the endpoint,

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 54 of 75 © 2023

while multiple pull-based monitoring tools can use the same endpoint simultaneously. With this
approach, generally, only one centralized configuration of the Retrieval Worker is required. On the other
hand, there is a need for a discovery mechanism to identify the assets. This is often accomplished by
means of the host name. Finally, the endpoints must be accessible to the Retrieval Worker. This can be
simplified by keeping an instance of the Retrieval Worker in the same cluster as the assets.

In order for the Retrieval Worker to be able to parse and store the scraped data, the endpoints must
use a standardized format referred to as exposition format. Generally, text-based formats are applied.
The format’s structure is usually based on lines, meaning each line will be considered a new entry,
which are sometimes referred to as samples. Lines are separated by a line feed character. Tokens
within the line must be separated by at least one space. Empty lines as well as trailing, leading and
redundant whitespaces are ignored. The following values are then extracted:

1. Metric names and labels: used for identification, querying, additional information, and human
understanding. Labels are optional, and the combination of a metric name and labels must be
unique for every line.

2. Value: a float value representing the numeric value of the metric. NaN, Inf+ and Inf- may be
provided for not a number, positive and negative infinity, respectively.

3. Timestamp: an integer representing the time of the event in a standard timestamp format.

The second method of data collection is via a push mechanism. As the Retrieval Worker can only pull
data, which may not be applicable for short-lived workloads and assets, a Push Gateway component
is proposed. The assets push their data to the Push Gateway, which serves as temporary cache
storage. The data are then periodically pulled from the Push Gateway by the Retrieval Worker.

Data retrieval for analysis and visualization is supported by directly querying the Internal Database or
requesting the data from the internal Server. Querying is generally performed using a standardized
query language, such as PromQL11, which enables filtering and aggregation by the metric name, labels,
timestamp of the data, or time ranges.

Data collection and retrieval using custom formats and protocols, such as AMQP, is provided in the
form of a Data Forwarder component. Data Forwarder is an extensible component that enables
retrieving or ingressing data via arbitrary protocols in a plugin-like fashion. Additional data aggregation
steps may be applied while forwarding data.

8.6 Monitoring and observability of asset runtime

Observability in modern service-based systems is characterized by its complex execution and
implementation. During the asset runtime—the asset being an operating system, compute node,
network switch, workload, or other monitorable entity—the system can be in numerous states and
experience many transitions. To properly characterize the system runtime, the system should provide
sufficient signals that aptly describe the execution context. In general, the following signals (as defined
in Section 8.4) are captured: traces, metrics, and logs. Traces are typically composed of spans, which
are individual units of work. Spans are connected in a tree-like structure, where the root span is the
entry point of the request, and the leaf spans represent the exit points. The spans are usually
represented in a JSON format and are the easiest to describe as well-structured logs. Spans within the
same trace all share the same trace identifier and are hierarchically connected via a parent identifier,
which contains the span identifier (a unique identifier of a span) of the span’s parent. In distributed
tracking, context propagation is a core concept that allows for spans to be assembled into a single
trace regardless of where they were generated. The context is an object storing information that allows
us to correlate related spans and associate them with a trace. Propagation is the process of passing
context between services.

Each observable asset must produce and emit some of the above-mentioned signals. This process is
called instrumentation. There are three main kinds of instrumentation corresponding to different
integration considerations:

11 https://prometheus.io/docs/prometheus/latest/querying/basics/

https://prometheus.io/docs/prometheus/latest/querying/basics/

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 55 of 75 © 2023

● Native instrumentation: A system component is instrumented out-of-the-box, i.e., the
component was instrumented at development time.

● Automatic instrumentation: A system component may be instrumented by applying additional
external dependencies that automatically plug in into the component and instrument it.

● Manual instrumentation: A system component must be manually adopted by changing the
component and reporting the relevant telemetry.

To ensure portability and interoperability, a set of telemetry standards and specifications are normally
adopted. The specification provides a set of rules, guidelines and requirements that the resulting
implementations should follow. The specifications define API, SDK, as well as data model specifications.
An example of such a specification is the OpenTelemetry12 specification.

8.7 Fine-grained monitoring in network switches

One of the innovations of the ACES monitoring framework is its tight integration with the network sub-
components. Specifically, we will leverage the computational capabilities of network data plane devices
(including programmable switches and SmartNICS/DPUs) to improve network observability.

The ACES network switches will compute fine-grained, flow-based metrics, per packet, directly in the
data plane. The rationale for our design is as follows. When deployed in an EMDC edge at Terabit traffic
speeds, conventional server-based solutions can only monitor a small subset of traffic for its
downstream applications, as they are limited to a few Gbps packet processing at best. Network traffic
needs thus to be sampled (at very low sampling rates) to meet the capabilities of the monitoring server.
By observing and computing in-network statistics over all network traffic in the network data plane,
the ACES monitor records are richer than the sampling-based records generated by traditional
systems, enabling new and improved network monitoring applications.

The ACES network telemetry data is to be considered along three axis, which we describe next (and is
further detailed in Deliverable D3.1).

Flow type. The ACES network switch monitor will compute metrics for multiple flow keys. Currently,
we are considering 4 types of keys: [MAC src, IP src], [IP src], [IP src, IP dst], and [5-tuple].

Flow atoms. The ACES switch stores telemetry data as “flow atoms”. These are specialized counters
pertaining to a specific flow key. At the moment, we consider three flow atoms: number of packets,
number of bytes, and squared number of bytes. These atoms are maintained in the switches’ stateful
memory and are used to compute several statistics.

Flow statistics. For generality, the ACES switch will compute a diverse set of statistics of two types:
unidirectional (1D), tracking outbound traffic, and bidirectional (2D), considering both inbound and
outbound traffic. The 1D flow statistics considered include weight, mean, standard deviation, time
intervals, etc. The 2D statistics include magnitude, radius, approximate covariance, and correlation
coefficient.

The goal for maintaining telemetry information considering multiple types of keys, storing multiple
counters, and computing a multitude of statistics, is generality. Certain applications (e.g., traffic
engineering), require coarser-grained information (e.g., aggregated per destination) to decide how to
shift traffic to improve network utilization. Others required fine-grained information (e.g., for each
containerized application), to understand application dynamics. More complex applications, such as
intrusion detectors used for network security, require a diversified set of information (both fine- and
coarse-grained) to detect attacks.

12 https://opentelemetry.io/docs/specs/

https://opentelemetry.io/docs/specs/

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 56 of 75 © 2023

8.8 Periodic and event-driven monitoring

The ACES monitoring framework will employ both periodic and event-driven approaches. For instance,
the enriched records mentioned in the previous section can be sent to the network control plane or to
other nodes of the ACES monitoring infrastructure either periodically or in a push-based manner. For
the latter, we will investigate the integration of a traffic change primitive in the network switches.

Traffic changes are commonly associated with events that require special attention from the operator.
They may be an indicator of a malicious attack on the network, of a bottleneck caused by a flash crowd,
or can be a sign of persistent congestion. The ability to detect traffic changes fast and efficiently is
therefore a fundamental requirement of many network operation tasks. A change detector primitive
avoids a difficult operational question: what should be the periodic timer interval? If too large, one may
miss important events (e.g., an attack); if too small, it will generate unacceptable network overhead. A
change detector is thus the enabler for the event-based mechanism we plan to integrate into ACES.

The challenge is implementing this primitive on the very restrictive compute and memory environment
that is a network switch. Our approach is the use of sketches [44,45,46]. Sketches are space-efficient
and provide probabilistic memory-accuracy guarantees, enabling the design of efficient and scalable
monitoring solutions for the network data plane. Several sketch-based systems have been recently
proposed, running different network monitoring tasks at line rates in high-speed server platforms or on
commodity switches. These modern systems are, however, restricted to heavy-hitter variants, and
none has considered the general problem of change detection we will consider in ACES.

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 57 of 75 © 2023

9 Cognitive Framework

The cognitive framework within the ACES platform is designed to enhance the edge data center with
autopoietic capabilities, allowing it to self-maintain in an autonomous manner. This capacity for
autopoiesis ensures that the EMDCs can adaptively manage their own resources for optimal
performance, resilience, and efficiency, mirroring living systems' ability to be self-sustaining. In this
regard, the cognitive framework facilitates advanced cognition in the systems software stack by taking
into account monitoring data, learning from previous events and interactions, and making informed
decisions to maintain optimal system conditions.

The cognitive framework's capabilities extend to include knowledge acquisition, whereby the system
continuously learns from the environment and user interactions. It processes this information to
understand the patterns and feedback, thereby enabling predictive analytics and prescriptive actions
to maintain system health and manage the workload dynamically. With an embedded machine learning
lifecycle management, the framework supports continuous integration and deployment (CI/CD) of AI
models, ensuring that they are always up-to-date and trained on the latest data.

Additionally, the cognitive framework includes a feedback loop mechanism that enables the system to
monitor its own performance and take corrective actions autonomously. This loop, driven by monitoring
tools and AI-driven analytics, enables a proactive response to potential issues, thereby maintaining
system reliability and stability. As part of cognition, the framework ensures data-driven decision-
making that aligns with the broader organizational objectives and performance metrics, empowering
the EMDC to act and react in an intelligent and informed manner.

Finally, the cognitive framework promotes a symbiotic relationship between different EMDCs and the
cloud, leveraging particular high-performance resources (Cloud) for heavy-duty processing and
storage while maintaining edge-specific operations for real-time and low-latency tasks. The achieved
balance enables a seamless execution and scalability along with a distributed approach to data
processing, where the offloading decisions will be made by the cognitive engine based on workload
requirements and resources availabilities and conditions.

9.1 Autopoiesis and predictive analytics
The foundation for autopoiesis is the detailed monitoring to continuously collect data on every aspect
of an EMDC's operation. This involves the monitoring infrastructure described in Chapter 8 which will
be implemented to aggregate and store the high-volume data, feeding it into the cognitive framework
for processing and analysis.

With data collected, the next step is for the cognitive framework to analyse and interpret this
information, identifying patterns and anomalies. Tools like Apache Spark can be used to handle large-
scale data analytics, applying algorithms to recognize normal operating parameters and detect
deviations.

Leveraging historical and real-time data, the cognitive framework employs predictive analytics to
forecast future conditions and potential issues before they arise. For example, it may predict resource
shortages, potential component failures, or periods of high demand using time-series forecasting
models or AI-based anomaly detection systems.

Based on these details a feedback loop mechanism will be provided in order to enable a self-regulating
EMDC. Driven by the insights gained from monitoring data and predictive analytics, the cognitive
framework determines prescriptive actions, adhering to a set of predefined rules, objectives, or learned
experiences. These actions are aimed at maintaining system health, such as triggering automated
scaling to meet increased demand, redistributing loads across servers, or initiating preventive

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 58 of 75 © 2023

maintenance. Decision-making is supported by AI models that evaluate multiple scenarios and their
potential impact on the system's performance and health.

9.2 ML models for the Edge

Edge-specific ML models must address unique challenges such as limited computational power,
constrained memory, sporadic connectivity, and latency-sensitive applications. The nature of edge
computing favors algorithms that can operate with high efficiency on small datasets, often in real-time.
For example, decision tree-based models or compact neural networks are preferable for such
constraints and can be implemented using libraries like Scikit-learn or TensorFlow Lite. Anomaly
detection and predictive maintenance are typical uses of ML at the edge, where immediate processing
is critical, leveraging models such as Isolation Forests or LSTM neural networks.

To facilitate lightweight ML models for edge environments, we must consider methods that reduce
model size and complexity. One approach is model compression, which can be achieved using pruning
techniques supported by libraries like TensorFlow’s Model Optimization Toolkit, which streamline the
network architecture by removing unnecessary weights. Quantization, done via TensorFlow Lite or
PyTorch’s torch.quantization, can also reduce the precision of the numbers used in the model, thereby
speeding up inference times and decreasing memory usage. Another technique to explore is splitting
computation through cloud-edge collaboration: computing partially at the edge while offloading more
complex processing to the cloud.

9.3 Edge Computing for ML

In the context of Edge Computing for AI-based applications, state-of-the-art collaborative and
distributed machine learning (ML) paradigms such as Federated Learning (FL) and Split Learning (SP)
can greatly benefit from the ACES platform, owing to its intelligent design and distributed edge cloud
computing capabilities.

Federated learning (FL)13 is an innovative collaborative ML approach. In FL, clients train model updates
locally based on their data (and a shared global model), then send these updates to a central
aggregator. This aggregator combines them into a new global model, which is redistributed to clients
for further training iterations. FL is efficient and scalable, distributing training across numerous clients
and executing it in parallel. Crucially, by allowing clients to retain their training data locally, thus, FL
enhances privacy of clients’ data. This aspect is vital for compliance with privacy regulations like the
GDPR and is generally beneficial when handling personal and sensitive data. Applications of FL include
next-word prediction for mobile keyboards, medical imaging, and intrusion detection systems.

Split learning (SL)14, another emerging collaborative ML paradigm, trains or infers ML models without
sharing raw data between clients. In a typical SL setup, each client trains a partial deep network, a
designated cut layer. The outputs at this layer are sent to another entity (server or client), which
completes the training. This process ensures that raw data privacy is maintained, as only specific
gradients from the cut layer are shared. The training continues until the model is fully developed without
compromising the privacy of raw data.

The ACES platform facilitates easy deployment, computational efficiency, and security for these
emerging collaborative ML paradigms. Its distributed edge infrastructure enables multiple clients in FL
and SL to collaboratively train ML models in an efficient and privacy-preserving manner. For instance,
each client in an ACES node can adapt flexibly to the dynamic and heterogeneous computing and
storage resource demands.

13 https://federated.withgoogle.com/
14 https://www.media.mit.edu/projects/distributed-learning-and-collaborative-learning-1/

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 59 of 75 © 2023

9.4 Combining Swarm Algorithms with AI/ML

The combination of AI/ML with swarm algorithms can lead to sophisticated models capable of managing
distributed resources in edge computing scenarios. Swarm intelligence principles, derived from
organisms' natural behaviour like birds flocking or fish schooling, can be applied to solve optimization
problems from the bottom up. These techniques can be combined with AI using, e.g., reinforcement
learning (RL) algorithms, accelerating the learning process through hyperparameter tuning. This has
already shown interesting results in the context of workload placement but most of the related works
have focused mainly on theoretical studies [47] in various libraries like Stable Baselines or
Reinforcement Learning Toolkit (RLTK) or others15. By using RL in conjunction with swarm intelligence,
distributed systems can autonomously determine optimal configurations and resource allocations,
which plays an important role in the dynamic environments of edge computing.

9.5 Explainability in AI

Explainable AI (XAI) refers to artificial intelligence systems designed to be transparent and
understandable to humans. XAI aims to make AI model outputs more interpretable, fostering user trust
and comprehension. The imperative for explainability in AI within the edge ecosystem lies in its ability
to provide transparency and build trust amongst users. Within ACES, we are exploring technologies to
enhance understanding of how the ACES cognitive engine functions, including the relationships
between internal and external data points and machine-based decision-making. For example, Libraries
such as SHAP offer capabilities to demystify the opaque decision-making processes of machine
learning models, enabling users to understand and trust their automated operations. For neural
networks, techniques like gradient-based saliency maps or class activation mappings, which are
available in libraries like tf-explain, offer visual interpretations of which parts of the input contribute to
the model's predictions. Explainability can be taken into account in the MLOps lifecycle, ensuring that
it is rather a consistent feature of the AI systems16 deployed at the edge.

9.6 MLOps and model lifecycle management
The ACES cognitive framework is designed to streamline the entire machine learning (ML) model
lifecycle, enabling everything from data preparation and model training to deployment and monitoring.
By implementing an MLOps approach, EMDCs can effectively manage the deployment of AI models at
the edge, ensuring that they are consistently trained on the latest data and optimized for the unique
constraints of edge environments. With the infrastructure required to support ML models continuously
evolving, this MLOps framework ensures agility and adaptability through automated workflows and
standardized processes. Thus, the edge micro data centre benefits from the MLOps capabilities by
minimizing human intervention and providing a systematic way to track model versioning and
performance over time.

Specifically, the MLOps framework within EMDCs defines a common set of services and functions that
are applicable across various ML models, thereby avoiding redundancy and simplifying the service
architecture. Through REST APIs and supporting libraries, it offers interfaces for ML model registration,
training, deployment, and serving, thereby supporting a seamless transition from model development
to production. This not only accelerates the time-to-market for AI-powered applications at the edge
but also ensures these applications are robust and scalable.

The ACES MLOps component will be composed of the following subcomponents:

• The Model trained Registry interface: Users can register different ML models after they trained
the models.

• The ML Training interface: the interface to integrate different ML models’ training methods.
With the integration, users can use the unified format to call the different ML training models

15 https://neptune.ai/blog/the-best-tools-for-reinforcement-learning-in-python
16 https://github.com/mlflow/mlflow/pull/3513

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 60 of 75 © 2023

and set up the related training configuration especially for distributed ML models. For example:
when to trigger training, the parameters of the training process, etc.

• The ML Serving interface: the interface for prediction/inference. With this interface, users can
use the unified format to call the different ML prediction methods.

• The ML validation interface: the interface to integrate different ML models validation methods.
With this interface, users can use the unified format to use the different ML validation function
or use some default validation methods in the cognitive framework.

• The ML model provider interface: for integration of different ML models. It provides a unified
API for the users to choose and use a ML model from those registered in the cognitive
framework.

• The ML monitoring interface: responsible for the communication and aggregation of
distributed training nodes, to track all the ML process data and provide different information
for monitoring services.

• The ML Security interface: helps setting up security parameters and integrate security specific
methods.

9.6.1 Cognitive framework tools and open-source libraries

The Cognitive Framework will be developed using the python language, supporting different python-
based libraries like scikit learn and TensorFlow. The Flask API will be used to develop all the APIs.

Figure 9.3: Cognitive framework tools

Each component of the cognitive Framework will include metadata collection, using kafka message
queue technology. For ML model related training, serving, and deployment components, we will use
the MLflow and kubeflow opensource tools. For the object relational mapper (ORM), we plan to use
SQLAlchemy for python to communicate with a postgresDB.

9.6.2 MLflow and kubeflow tools

The Cognitive Framework will provide the whole ML model lifecycle management. This includes the
model register, model tracking, model training, model deployment, model serving, and model
monitoring.

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 61 of 75 © 2023

Figure 9.4: MLFlow and Kubeflow integration

To integrate different ML models and support different functions of the ML lifecycle, we plan to use
and improve upon open-source tools MLflow and Kubeflow.

MLflow focuses on track model runs, including model parameters, metrics, results, data used, and code.
It provides the model register and model tracking components that fit our cognitive framework
functions requirement. It uses the jupyter notebook to save the model code and parameters. After the
training process, all model related information is recorded.

The Kubeflow tool is dedicated to making deployments of machine learning (ML) workflows on
Kubernetes simple, portable, and scalable. It provides a straightforward way to deploy best-of-breed
open-source systems for ML to diverse infrastructures.

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 62 of 75 © 2023

10 Security and Privacy
Cloud-edge services process and store large volumes of (sensitive) data, making them vulnerable to
cyber-attacks such as data breaches and unauthorized access, leading to potential misuse of data,
data loss or data privacy violation. Moreover, the inherent interconnectedness of cloud-edge networks
makes them susceptible to network-based Distributed Denial of Service (DDoS) attacks. Such attacks
can overload network resources, severely disrupting service availability. Another critical concern is the
risk of Man-in-the-Middle (MitM) attacks. These occur during data transfers between edge devices
and cloud servers, potentially compromising the integrity and confidentiality of the data. Furthermore,
the complexity of various regional and industry-specific regulations, such as the General Data
Protection Regulation (GDPR), poses significant challenges in cloud-edge settings. This complexity is
exacerbated when data is processed and stored across multiple locations, complicating compliance
efforts.

In ACES, we recognize that protecting systems, services, and data against security and privacy threats
is crucial to secure the system, comply with regulations, and meet customer requirements. Therefore,
we aim to incorporate comprehensive security features into the system to ensure that ACES is secure
by design. In the following sections, we will identify specific security and privacy requirements by
carefully considering the use-case requirements (defined in Section 2.3) and the ACES architecture
(Section 3.2). We provide a systematic design for ACES security components based on these
requirements. This design is aimed at ensuring that ACES is resilient to cyberattacks, thereby
safeguarding the availability, integrity, confidentiality, and privacy of ACES systems and data. We aim
to prevent unauthorized access, service disruptions, data leakage, and data loss.

10.1 Security requirements

We are guided by three general security and privacy requirements:

● Authentication: The system should have robust authentication mechanisms such as access

controls, secure communication and data encryption to ensure only authorized parties can access
the service and their data.

● Availability and Integrity: The system should ensure that the computing services and data are
accurate, consistent, and reliable against cyberattacks. The system should implement measures
to detect and prevent unauthorized access and modification of data. Further, the system should
have effective network intrusion and anomaly detection to monitor network traffic, nodes, and
containers, to detect and mitigate suspicious behaviours caused by cyberattacks such as DoS
attacks.

● Privacy: The solution must comply with data privacy regulations such as GDPR. Further, the
solution should be able to prevent data leakage to any unauthorized parties.

10.2 Overview of security and privacy component

To achieve the requirements mentioned above, we provide a comprehensive multi-layer security
solution aligned with the overall ACES architecture provided in Section 3. Figure 10.1 provides a high-
level overview of the security components. This consists of five sub-components that will be
elaborated in the following sections.

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 63 of 75 © 2023

Figure 10.1: Overview of ACES Security Component

10.3 Authentication

Authentication is essential for any service to protect access from unauthorized parties. Given the
remote locations of ACES nodes, privacy is also a requirement for ACES authentication. The proximity
between ACES nodes and clients during authentication can compromise user privacy, potentially
revealing sensitive information such as location data. Among the requirements of ACES are client
privacy and compliance with European laws, namely the GDPR. We will develop anonymous
authentication schemes leveraging public key encryption that will explore the introduction of
pseudonyms for efficiency. The methods to be deployed should also preserve client privacy after
possible revocation, introducing a new abstraction of non-revocation proofs. We will follow a fully
distributed design, respecting the principles of Verifier Local Revocation (VLR), a crucial aspect for
ACES to maintain scalability and avoid reliance on centralized services that can become single points
of failure.

10.4 Audit, secure storage and backup

ACES will ensure fault tolerance through the replication of its services and storage. The ACES data and
intelligence will be replicated horizontally across edge sites, operating within a zero-trust environment.
Given the vulnerability of edge sites to failures, corruptions, or attacks due to their exposed nature, an
inherent security risk could jeopardize the fidelity of ACES replication. We will, therefore, introduce

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 64 of 75 © 2023

auditing tools to assess the correct level of ACES replication at the edge. In response to this challenge,
we will develop storage-proof mechanisms designed to audit the location of data in distributed
settings, such as the edge environment. The cryptographic proof should pinpoint data locality with
millisecond precision despite the variations in network delays at the edge, and it should be able to
detect SLA violations. This auditing tool further enables distributed entities to build trust at the edge.

10.5 Network and hardware security

In ACES, we will develop an ML-based attack detector with two key characteristics. First, it is based
on the analysis of network meta-data, instead of payload traffic. As such, it can be used to detect
attacks that use encrypted traffic, in contrast to conventional signature-based malicious traffic
detectors that work only on unencrypted traffic (e.g., Snort). Second, it works by tracking deviations
from regular traffic patterns to detect attacks, enabling the detection of zero-day attacks. To address
the main performance of existing systems –the overhead of the ML pipeline processing – we will
develop a cross-platform malicious traffic detector. The key idea is to offload the detection process to
the network data plane. Specifically, we aim to run the ML feature computation in a network switch.
The ACES switch should process a diverse set of flow statistics as ML features of types, without the
need to inspect packet payloads. By computing features in the switch, we avoid the required packet
sampling of state-of-the-art detectors to improve detection performance in the ACES Terabit network.

10.6 Node and container security

Container-based applications are increasingly being adopted due to their convenience in development,
deployment, and management. In ACES, containers are fundamental elements for deploying ACES
agents and services. However, recent studies show that containers are vulnerable to various security
attacks e.g., Authentication Bypass, Disclosing Credential Information, and Denial of Service (DoS)
attacks. Such attacks allow attackers to open a reverse shell or establish a backdoor within a container
by exploiting specific vulnerabilities. The successful exploitation grants the attacker complete control
over the container. Further, Disclosing Credential Information Attacks strive to uncover usernames,
passwords, or the directory structure of the underlying OS such that the attacker can impersonate a
legitimate user, altering, deleting, or stealing valuable data. DoS Attacks target containers and
container services, rendering them inoperable by exhausting the containers or host’s resources. An
illustrative example is a clandestine cryptocurrency miner operating within a container, excessively
consuming resources and inhibiting the container’s primary functions. To secure the ACES system, we
will build a framework that involves a systematic method to effectively analyse and evaluate anomaly
detection models. We will perform extensive analyses regarding the different types of attacks and
defenses existing for the container ecosystem. This will provide a clear view regarding the state-of-
the-art attack techniques and defenses for container systems. More importantly, we will develop novel
defense approaches to prevent state-of-the-art attacks effectively. Our approach will leverage
advanced techniques, such as vulnerability scanning and dynamic deep-learning-based anomaly
detection, to detect not only vulnerabilities but also attacks in real time. To this end, our container
security component is designed to monitor and safeguard containers against state-of-the-art threats,
such as privilege escalation, credential disclosure, or DoS attacks.

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 65 of 75 © 2023

10.7 ML security

Machine Learning (ML) is pivotal in powering ACES intelligence agents and services. However, ML
algorithms and frameworks are vulnerable to security and privacy threats. In ACES, we will develop
components incorporating multiple security mechanisms to defend against data and model poisoning
attacks, as well as inference attacks, in distributed learning systems like federated learning—a key
potential service within ACES—and AI/ML-based network control. These components should bolster
security against backdoor and inference attacks.

In backdoor attacks, adversaries subtly manipulate the global model, causing specific inputs the
attacker chooses to produce incorrect predictions. An adversary might also introduce multiple
backdoors simultaneously. Meanwhile, in inference attacks, adversaries attempt to glean information
about clients' local training data by analysing their model updates. To counter backdoor attacks, we
propose a comprehensive strategy that employs cutting-edge defense techniques, including model
clustering, clipping, and parameter noising. Additionally, we integrate several privacy measures to
thwart inference attacks, such as secure two-party computation techniques (STPC), trusted
computing, and blockchains. These measures restrict access to local model updates, thereby hindering
potent inference attacks.

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 66 of 75 © 2023

11 System integration
This section summarises the ACES components interfaces and APIs specifications along with
their main responsibilities and technologies to be based upon. Furthermore, it describes the
integrated development and testing environment upon which the ACES solution platform is
built; including the Continuous Integration/Continuous Delivery processes put in place to
support all the development, testing, integration, and deployment activities.

11.1 ACES components, interfaces and interactions

In total, a set of 9 components was defined, as follows:

- The ACES frontend component, including the Authentication and Authorization
interface;

- The Workflow Management Component for the definition of applications as graphs of
microservices;

- The Cognitive Engine and MLOps component;
- The Orchestration component composed of a multi-cluster and a inter-cluster

workload placement based on swarm intelligence;
- The Data Management component featuring the decentralized storage functionality;
- The Resource Management and Containerization Runtime component;
- The Networking component;
- The Monitoring and Telemetry component;
- The Security component.

Each of the components is capable of performing a specific set of actions / functionalities and
addressing a specific set of requirements. On the other hand, the conceptual representation
of ACES architecture aims at integrating all identified components into a logical diagram,
facilitating a complete information flow, comprising the preliminary version of the conceptual
architecture of the integrated platform.

The architecture is designed in a modular way facilitating easy maintenance, modifiability and
extensibility, and can thus be used and easily extended and customised accordingly in order
to include end users, data scientists and stakeholders needs not considered until now,
including new inputs to reach different needs of interested parties, as well as new ones.

Figure 3.1 (Section 3.1) depicted the high-level ACES architecture diagram including the main
architectural components, information flows and interactions among them. The ACES
architecture follows a layered approach which aims at ensuring interoperability among all
involved components, putting emphasis on the way that pipelining of information is supported,
safeguarding smooth interoperation of the supported services.

The ACES architecture is defined in such a way that every component can be independent
while bringing a particular functionality. Each component in ACES may consist of different
internal software modules or sub-components while having the capability to interact with
other components via a particular interface, usually an API. This sub-section will provide a
summary of, per component: responsibilities, main technologies used, interactions with other
components, and main interfaces. This is shown in the following tables.

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 67 of 75 © 2023

Name ACES frontend interface

Description

This component is responsible for providing the frontal
interface of ACES platform featuring the authentication &
authorization panel along with the connection to the different
system or user level components

Responsible Partner HIRO

Function ACES frontend, authentication & authorization panel and
centralization of the various ACES interfaces

Subsystems Authentication & authorization, Centralization of interfaces

Type of Interface Web, REST

Technologies Django, React

Interaction with
components

Workflow Management, Data Management, Cognitive Engine,
Monitoring

Name Workflow Management

Description This component is responsible for enabling the creation of
applications through workflows/graphs of microservices

Responsible Partner MAR

Core Partners HIRO, UL

Function Workflow design, microservices connection in workflows,
microservices packaging

Subsystems -

Type of Interface REST

Technologies Prefect, Ryax, Airflow

Interaction with
components

Data Management, Cognitive Engine, Orchestration,
Resource Management

Name Cognitive Engine

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 68 of 75 © 2023

Description
This component is responsible for selecting the right ML
algorithms for the different aspects needed for the system
and performing the MLOps for system and user-level needs

Responsible Partner HIRO

Function MLOps platform

Subsystems Cognitive Engine and MLOps

Type of Interface REST

Technologies Kubeflow, MLFlow, Feast

Interaction with
components Data Management, Orchestration, Resource Management

Name Orchestration

Description This component is responsible for enabling the orchestration
in either the multi-cluster or the inter-cluster scenario

Responsible Partner LAKE

Core Partners UPM, HIRO, UL

Function Container orchestration and scheduling

Subsystems multi-cluster scheduler, single cluster scheduler

Type of Interface REST

Technologies multi-cluster scheduling or Kubernetes scheduler

Interaction with
components Data Management, Orchestration, Resource Management

Name Data Management

Description
This component is responsible for managing the ACES
knowledge base that captures the supply, demand, and
current runtime state of the platform.

Responsible Partner UPM

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 69 of 75 © 2023

Core Partners MAR

Function -

Subsystems Knowledge model, property graph storage component, time
series data storage component.

Type of Interface REST

Technologies MemGraph, InfluxDB

Interaction with
components

Workflow Management, Orchestration, Resource
Management

Name Resource Management

Description

This component is responsible for i) application orchestration
at the level of EMDCs and Kubernetes clusters and ii) EMDC
and/or nodes’ management. Applications’ orchestration will be
driven by the cognitive engine component

Responsible Partner SIXSQ

Core Partners HIRO

Function configure a Container-as-a-Service Kubernetes endpoints,
launch applications of the Kubernetes cluster

Subsystems Kubernetes, telemetry tools

Type of Interface REST

Technologies Nuvla/NuvlaEdge. Kubernetes, CRIO

Interaction with
components Workflow Management, Cognitive engine

Name Monitoring and Observability

Description

This component is responsible for providing monitoring and
observability aspects to the different layers of the software
stack on various levels (i.e., edge, cloud, application, and
network layer)

Responsible Partner UL

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 70 of 75 © 2023

Function Monitoring data collection, instrumentation, telemetry,
anomaly detection, alerting, data analysis and visualization

Subsystems
Monitoring and Observability Core, Push Gateway, Data
Forwarder, Anomaly Detection, Alert Manager, Service
Discovery Mechanism, Data Analysis, Export and Visualization

Type of Interface REST, graphical (web), custom pluggable

Technologies Prometheus, Thanos

Inputs ACES monitoring and telemetry data, metrics

Interaction with
components All

Name Networking

Description This component is responsible for enabling the networking
capabilities for the edge micro data centers

Responsible Partner INESC

Function -

Subsystems Single-cluster networking and multi-cluster networking

Type of Interface REST

Technologies Cilium, Istio, Submarinner, ONOS. P4, P4RT

Interaction with
components

Workflow Management, Orchestration, Resource
Management

Name Security

Description This component is responsible for protecting ACES systems,
services, and data against security and privacy threats

Responsible Partner TUD

Function Security and privacy solutions for monitoring and protecting
ACES components, services, and data

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 71 of 75 © 2023

Subsystems Secure authentication and storage, network security, node
and container security, ML security

Type of Interface Web, REST

Technologies Sysdig, NIDS, Anomaly Detection

Inputs ACES metrics

Interaction with
components

Workflow Management, Orchestration, Resource
Management

11.2 ACES platform integration environment

The ACES platform ensures consistency and quality through a structured process including integration,
testing, release, distribution, and deployment. The process is designed to adhere to high-quality
standards, and it includes standard approaches to packaging, distribution, deployment, and
documentation. ACES uses Continuous Integration and Continuous Deployment (CI/CD) to automate
these processes. The benefits of this system include quicker delivery and feedback, less manual effort,
and fewer errors.

Whenever a change is made to a component, an automatic pipeline is initiated consisting of the
following steps:
1. Compiling the component into a binary file from its source code.
2. Running unit tests and checks on the component.
3. Packaging the component in Docker Images, and creating Helm charts for Kubernetes deployment.
4. Deploying everything into a test environment.

To enable this, an on-site infrastructure is being assembled, including:
● A GitLab server for managing source code and collaboration.
● A Harbor server for hosting Docker Images and Helm charts.
● A Kubernetes cluster to serve as the testing ground.
● Tools like Kaniko for Docker Image builds.
● Other infrastructure tools such as LDAP, a mail server, and logging and analysis tools.

There are also internal tools developed to streamline the pipeline, such as 'cicd-scripts' for job
templates, a 'cicd-helper-image' that includes necessary tools, and a Helm 'common' chart for simpler
Helm chart development.

Pipeline runs are routinely executed as parts of components are updated, producing reports and
artifacts that are stored on GitLab. However, not all these builds are stable or ready for release; they
are often for development and integration checks only. A release occurs once the version is stable and
verified—this action is facilitated by GitLab's "Releases" feature, allowing developers to automate the
release process by labelling the version, noting the release, and thus triggering the pipeline and storing
the final artifacts on the Harbor repository. All ACES component releases are maintained in a centralized
public repository, ensuring unified access and management.

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 72 of 75 © 2023

The ACES platform is built to work across different settings, including mainly on-premises and edge
micro data centres, as well as cloud-based infrastructures. Due to its versatility and the range of
components it includes, there's a need to employ simple and reliable deployment methods that
minimize the risk of errors. To achieve this, Infrastructure as Code (IaC) tools like Terraform are used.
Terraform is the chosen tool because it is highly regarded for setting up infrastructure efficiently and
safely. Being an open-source tool, it has a large support community and works with various
infrastructures.

The deployment process for ACES is split into two main stages. In the first stage, Terraform scripts are
pulled from the central ACES Git repository to set up the infrastructure where the ACES components
will be housed. In the following stage, Helm charts are employed to install and configure these
components in the Terraform-prepared environment. Anyone deploying the ACES platform will just
need the Terraform and Helm clients, as well as the necessary resources for ACES to operate.

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 73 of 75 © 2023

12 Conclusion
This deliverable presented the high-level view of the architecture of ACES along with the different
research areas and components related to the ACES platform. The architecture is generic enough to
remain as is until the end of the project, whereas the refinement of the list of components will take
place in the upcoming months. The final set of components to be implemented will be presented in the
upcoming deliverable D2.2a ACES kernel components. In case there are updates in the ACES
architecture, these will be presented in that intermediate deliverable.

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 74 of 75 © 2023

13 References
[1] https://www.sciencedirect.com/science/article/pii/S0160791X23001203
[2] https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9744527
[3][https://www.scopus.com/record/display.uri?eid=2-s2.0
84987842183&origin=inward&txGid=f8351620c2647bed6c937753f185652e]
[4] [https://www.sciencedirect.com/science/article/pii/S2666792420300068]
[5] Andrew Jeffery, Heidi Howard, Richard Mortier: Rearchitecting Kubernetes for the Edge. CoRR
abs/2104.02423 (2021)
[6]L. Larsson, H. Gustafsson, C. Klein and E. Elmroth, "Decentralized Kubernetes Federation Control
Plane," 2020 IEEE/ACM 13th International Conference on Utility and Cloud Computing (UCC), Leicester,
UK, 2020, pp. 354-359, doi: 10.1109/UCC48980.2020.00056.
[7] Zhang Wei-guo, Ma Xi-lin, and Zhang Jin-zhong. 2018. Research on Kubernetes' Resource
Scheduling Scheme. In Proceedings of the 8th International Conference on Communication and
Network Security (ICCNS '18). Association for Computing Machinery, New York, NY, USA, 144–148.
https://doi.org/10.1145/3290480.3290507
[8] Malte Schwarzkopf: Cluster Scheduling for Data Centers. ACM Queue 15(5): 70 (2017)
[9] Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, John Wilkes: Borg, Omega, and
Kubernetes. Commun. ACM 59(5): 50-57 (2016)
[10] B. Hindman et al, “Mesos: A platform for fine-grained resource sharing in the data center,” in
NSDI'11 Proceedings of the 8th USENIX conference on Networked systems design and implementation,
2011.
[11] https://kubernetes.io/blog/2016/12/container-runtime-interface-cri-in-kubernetes/
[12] https://kubernetes.io/blog/2019/01/15/container-storage-interface-ga/
[13] https://github.com/containernetworking/cni
 [14] https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/device-plugins/
[15] https://k3s.io/
[16] https://microk8s.io/
[17] https://github.com/kubernetes-sigs/federation-v2
[18]Giovanni Bartolomeo, Mehdi Yosofie, Simon Bäurle, Oliver Haluszczynski, Nitinder Mohan, Jörg
Ott:Oakestra: A Lightweight Hierarchical Orchestration Framework for Edge Computing. USENIX Annual
Technical Conference 2023: 215-231
[19]Marcos Dias de Assunção, Alexandre Da Silva Veith, Rajkumar Buyya: Distributed data stream
processing and edge computing: A survey on resource elasticity and future directions. J. Network and
Computer Applications 103: 1-17 (2018)
[20]Zhang Wei-guo, Ma Xi-lin, and Zhang Jin-zhong. 2018. Research on Kubernetes' Resource
Scheduling Scheme. In Proceedings of the 8th International Conference on Communication and
Network Security (ICCNS '18). Association for Computing Machinery, New York, NY, USA, 144–148.
https://doi.org/10.1145/3290480.3290507
[21] Schranz, M., Di Caro, G. A., Schmickl, T., Elmenreich, W., Arvin, F., Şekercioğlu, A., & Sende, M.
(2021). Swarm intelligence and cyber-physical systems: concepts, challenges and future trends.
Swarm and Evolutionary Computation, 60, 100762.
[22] Hamann, H. (2018). Swarm robotics: A formal approach (Vol. 221). Cham: Springer.
[23] Szopek, M., Schmickl, T., Thenius, R., Radspieler, G., & Crailsheim, K. (2013). Dynamics of collective
decision making of honeybees in complex temperature fields. PloS one, 8(10), e76250.
[24] Sempo, G., Canonge, S., Detrain, C., & Deneubourg, J. L. (2009). Complex dynamics based on a
quorum: Decision‐making process by cockroaches in a patchy environment. Ethology, 115(12), 1150-
1161.
[25] Beckers, R., Deneubourg, J. L., & Goss, S. (1992). Trails and U-turns in the selection of a path by
the ant Lasius niger. Journal of theoretical biology, 159(4), 397-415.
[26] Bodi, M., Thenius, R., Szopek, M., Schmickl, T., & Crailsheim, K. (2012). Interaction of robot swarms
using the honeybee-inspired control algorithm BEECLUST. Mathematical and Computer Modelling of
Dynamical Systems, 18(1), 87-100.
[27] Gunther, N. J. (1993, December). A simple capacity model of massively parallel transaction
systems. In Int. CMG Conference (pp. 1-9)

https://www.sciencedirect.com/science/article/pii/S0160791X23001203
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9744527
https://www.scopus.com/record/display.uri?eid=2-s2.0%2084987842183&origin=inward&txGid=f8351620c2647bed6c937753f185652e
https://www.scopus.com/record/display.uri?eid=2-s2.0%2084987842183&origin=inward&txGid=f8351620c2647bed6c937753f185652e
https://www.sciencedirect.com/science/article/pii/S2666792420300068
https://dblp.org/pid/138/7043.html
https://dblp.org/pid/06/4997.html
https://dblp.org/pid/28/5155.html
https://dblp.org/db/journals/corr/corr2104.html#abs-2104-02423
https://dblp.org/db/journals/corr/corr2104.html#abs-2104-02423
https://doi.org/10.1145/3290480.3290507
https://microk8s.io/
https://doi.org/10.1145/3290480.3290507

Autopoietic Cognitive Edge-cloud
Services

D2.1 – ACES Architecture Definition
 Page 75 of 75 © 2023

[28] Melanie Schranz, Kseniia harshina, Peter Forgacs, Fred Buining, Agent-based Modeling in the Edge
Continuum using Swarm Intelligence, submitted to the ICAART Conference, 2024.
[29] Melanie Schranz, Gianni Di Caro, Thomas Schmickl, Wilfried Elmenreich, Farshad Arvin, Ahmet
Şekercioğlu, Micha Sende, Swarm intelligence and cyber-physical systems: concepts, challenges and
future trends. Swarm and Evolutionary Computation, 60, 100762, 2021.
[30] Melanie Schranz, Martina Umlauft, Wilfried Elmenreich, Bottom-up Job Shop Scheduling with
Swarm Intelligence in Large Production Plants. In International Conference on Simulation and Modeling
Methodologies, Technologies and Applications, pp. 327-334, 2021.
[31]R. Kumar, “White Box Monitoring and Black Box Monitoring explained,” March 2020. [Online].
Available: https://www.devopsschool.com/blog/white-box-monitoring-and-black-box-monitoring-
explained/. [Accessed 5. 12. 2023].
[32]C.-a. Sun, M. Li, J. Jia and J. Han, “Constraint-based model-driven testing of web services for
behavior conformance,” in Service-Oriented Computing: 16th International Conference, ICSOC 2018,
Hangzhou, China, November 12-15, 2018, Proceedings 16, 2018.
[33]Y. Yang, L. Wang, J. Gu and Y. Li, “Transparently capturing execution path of service/job request
processing,” in Service-Oriented Computing: 16th International Conference, ICSOC 2018, Hangzhou,
China, November 12-15, 2018, Proceedings 16, 2018.
[34]H. Johng, D. Kim, T. Hill and L. Chung, “Estimating the performance of cloud-based systems using
benchmarking and simulation in a complementary manner,” in Service-Oriented Computing: 16th
International Conference, ICSOC 2018, Hangzhou, China, November 12-15, 2018, Proceedings 16, 2018.
[35]O. Mart, C. Negru, F. Pop and A. Castiglione, “Observability in kubernetes cluster: Automatic
anomalies detection using prometheus,” in 2020 IEEE 22nd International Conference on High
Performance Computing and Communications; IEEE 18th International Conference on Smart City; IEEE
6th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), 2020.
[36]J. Lin, P. Chen and Z. Zheng, “Microscope: Pinpoint performance issues with causal graphs in
micro-service environments,” in Service-Oriented Computing: 16th International Conference, ICSOC
2018, Hangzhou, China, November 12-15, 2018, Proceedings 16, 2018.
[37]S. Niedermaier, F. Koetter, A. Freymann and S. Wagner, “On observability and monitoring of
distributed systems–an industry interview study,” in Service-Oriented Computing: 17th International
Conference, ICSOC 2019, Toulouse, France, October 28–31, 2019, Proceedings 17, 2019.
[38]M. Usman, S. Ferlin, A. Brunstrom and J. Taheri, “A survey on observability of distributed edge &
container-based microservices,” IEEE Access, 2022.
[39]OpenTelemetry, “Specifications | OpenTelemetry,” [Online]. Available:
https://opentelemetry.io/docs/specs/. [Accessed 5. 12. 2023].
[40]“Query Standardization Working Group,” [Online]. Available: https://github.com/cncf/tag-
observability/blob/main/working-groups/query-standardization.md. [Accessed 5. 12. 2023].
[41]P. Authors, “Prometheus Remote-Write specification,” April 2023. [Online]. Available:
https://prometheus.io/docs/concepts/remote_write_spec/. [Accessed 5. 12. 2023].
[42]W3C, “Trace Context,” November 2021. [Online]. Available: https://www.w3.org/TR/trace-context/.
[Accessed 5. 12. 2023].
[43] Kernbach, S., Thenius, R., Kernbach, O., & Schmickl, T. (2009). Re-embodiment of honeybee
aggregation behavior in an artificial micro-robotic system. Adaptive Behavior, 17(3), 237-259.
[44] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and Vladimir Braverman. 2016.
One Sketch to Rule Them All: Rethinking Network Flow Monitoring with UnivMon. In Proceedings of the
2016 ACM SIGCOMM Conference (SIGCOMM '16). Association for Computing Machinery, New York,
NY, USA, 101–114. https://doi.org/10.1145/2934872.2934906
[45] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou, Rui Miao, Xiaoming Li, and
Steve Uhlig. 2018. Elastic sketch: adaptive and fast network-wide measurements. In Proceedings of
the 2018 Conference of the ACM Special Interest Group on Data Communication (SIGCOMM '18).
Association for Computing Machinery, New York, NY, USA, 561–575.
https://doi.org/10.1145/3230543.3230544
[46] Yinda Zhang, Zaoxing Liu, Ruixin Wang, Tong Yang, Jizhou Li, Ruijie Miao, Peng Liu, Ruwen Zhang,
and Junchen Jiang. 2021. CocoSketch: high-performance sketch-based measurement over arbitrary
partial key query. In Proceedings of the 2021 ACM SIGCOMM 2021 Conference (SIGCOMM '21).
Association for Computing Machinery, New York, NY, USA, 207–222.
https://doi.org/10.1145/3452296.3472892
[47] Alqarni, Mohamed A., Mohamed H. Mousa, and Mohamed K. Hussein. "Task offloading using GPU-
based particle swarm optimization for high-performance vehicular edge computing." Journal of King
Saud University-Computer and Information Sciences 34.10 (2022): 10356-10364.

https://doi.org/10.1145/2934872.2934906
https://doi.org/10.1145/3452296.3472892

