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Executive Summary 
 
The ACES project aims to develop a highly decentralised autopoietic and cognitive framework for 
edge-cloud computing built around AI/ML and swarm intelligence. This deliverable outlines the ACES 
architecture and its key components. 
 
The document starts by presenting its motivating use cases, elucidating how ACES supports its edge 
computing scenarios. The use-case requirements delve into the nature of data and knowledge, its 
decentralised storage, networking, scalability, and security requirements, providing a comprehensive 
understanding of the challenges ACES aims to address. 
 
An in-depth exploration of the ACES architecture follows, presented from different angles: functional, 
component, tools, and hardware. This architectural overview highlights the key features and 
innovations of the project, offering a high-level view of how ACES can reshape edge computing by 
integrating cutting-edge technologies and concepts. 
 
The subsequent chapters delve into the core aspects of the project, covering resource management, 
data management, orchestration, networking, monitoring, cognition, and security. Each section 
provides insights into these domains' background, design requirements, and innovations, showcasing 
ACES' commitment to addressing some fundamental challenges in the edge-cloud continuum 
context. 
 
Finally, the deliverable explores the integration design of ACES components, interfaces, and 
interactions to provide a holistic view of the framework. 
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Disclaimer 
 
This document contains material, which is the copyright of certain ACES contractors, and may not be 
reproduced or copied without permission. All ACES consortium partners have agreed to the full 
publication of this document if not declared “Confidential”. The commercial use of any information 
contained in this document may require a licence from the proprietor of that information. The 
reproduction of this document or of parts of it requires an agreement with the proprietor of that 
information, according to the provisions of the Grant Agreement and the Consortium Agreement 
version 3 – 29 November 2022. The information, documentation and figures available in this deliverable 
are written by the Autopoiesis Cognitive Edge-cloud Services (ACES) project’s consortium under EC 
grant agreement 101093126 and do not necessarily reflect the views of the European Commission. The 
European Commission is not liable for any use that may be made of the information contained herein. 
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1 Introduction 
Current edge-to-cloud architectures typically have a hub and spoke design, in which devices move 
their data to a distant datacentre (hub) with IaaS and PaaS management systems to manage and 
process the data with knowledge of workload resource requirements and their availability. The results 
are then pushed back out to the edge devices. Hyperscale and large datacentres use their economies 
of scale (incl. overprovisioning) and cognition in workload management to create stability and 
performance despite the fluctuations in the demand, and the availability of resources. 
 
Edge infrastructures (FOG, MEC Edge MicroDataCenters) are more challenged in their stability and 
performance because of more stringent latency and autonomy requirements, distribution across 
multiple sites, their local limited size, multi-tenancy and multi-operators, local management, with 
components being concurrent and asynchronous. 
 
This challenge to edge infrastructures is growing rapidly due to the increasing i) number of connected 
devices and their data-producing and data-consuming capabilities, ii) intelligence embedded in edge 
devices, iii) atomization of monolithic applications, iv) scale, speed, and complexity of edge device 
interactivity in a zero-trust environment. 
 
The Autopoiesis Cognitive Edge-cloud Services (ACES) general aim is to research an evolution of cloud 
computing towards a hybrid edge-cloud continuum to effectively manage disaggregated 
computational resources while enabling the execution of complex modern data analytics applications. 
This is proposed through an edge systems software stack enabling decentralization and hierarchical 
intelligence, with specific autopoiesis and cognitive behaviours, to manage and automate a computing 
platform, network fabric, and storage resources, along with the analytics to be executed, to increase 
resilience while managing simultaneous service constraints. 
 
Autopoiesis and cognition will be infused on different levels of the workload placement framework, 
service and resource management, data and policy management to manage their own stability with 
knowledge of its distributed component deployment, their state of health along with the knowledge of 
best practices to deal with fluctuations. 
 

1.1 Objectives of the deliverable 
 
The objective of the deliverable is to define the architecture of the ACES framework. This is expressed 
as a set of different views, namely the functional view, the components view, and the tools’ view. To 
effectively design the architecture of ACES we brought forward the characteristics and requirements 
of ACES use cases which are used as the basis for our analysis and the definition of the different 
requirements and needs in terms of deployment and platform control. Based on this architecture a set 
of specific research areas and derived components are proposed and analysed. This list of research 
areas and components will be refined in the following months of the project while particular studies 
and developments will be started to address the different design specifications. 
 
This document provides the generic architecture of ACES which will follow the project until the end. 
However, specific updates may be needed and if this is the case this will be reported in different 
intermediate deliverables such as the D2.2a ACES kernel components planned for M18, the D5.1 
Validation and Demonstration plan planned for M19, along with the final deliverable of the project, D5.2 
Use case Validation and Demonstration report, planned for M36. 
 
 

1.2 Structure of the document 
 
The remainder of this deliverable is as follows. The use case requirements are presented in Section 2 
which are considered as inputs to create the architecture of ACES. The architecture along with the 
different views of the architecture and the initial concepts are then described in detail in Section 3. 
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Then, the various areas of interest of the ACES project are presented one by one in a different section. 
Section 4 discusses Resource Management, Section 5 introduces Data Management, Section 6 
presents Orchestration and Section 7 brings forward Networking. Then, Section 8 presents Monitoring 
and Observability, Section 9 describes the ACES cognition framework, and Section 10 discusses 
Security and Privacy. Finally, Section 11 involves Integration Design, and Section 12 concludes this 
document. 
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2 Use-case requirements and related 
service design 

The three use cases of ACES target the Energy sector. Companies from this sector operate in a complex 
environment characterized by restrictive regulations, increasing competition, geopolitical influences, 
and changing stakeholder expectations. To be able to respond dynamically to these changes, ensuring 
open, automated communication and real-time operation of the energy system, managers need to 
transform companies digitally. While the digital transformation of energy companies is inevitable, 
limited access to specific resources can slow down or, in extreme cases, prevent the process of 
digitalization [1]. 
  
On the other hand, climate change regulations like the Green Deal are pushing the current Power Grid 
Infrastructure to its limits. Electric vehicles and renewable energy sources have reduced emissions and 
energy costs but due to their distributed and inverter-based nature, they also decrease the power 
quality and pose serious threats to the power network stability. Sustaining the power quality and 
creating a network capable of operating in a highly distributed way creates a serious challenge for the 
Transmission System Operators (TSOs). In this highly anticipated and clean energy era, the vast 
penetration of metering and control devices all over the network has paramount importance but further 
observing the state of the grid is not enough to achieve our goal. Sophisticated algorithms gaining 
insight into the generated measurements and quickly responding to incidents will increase the 
robustness of the network. 
  
Thus, the increase in produced and transmitted data puts a heavy burden on their respective computing 
and networking resources. This growth in produced data and the necessity to further process them 
form a new landscape for the energy sector. Centralised Cloud computing architecture although 
simpler to adopt falls short in many requirements of the future vision of a smart grid [2].  To complement 
cloud computing there is a need for a solution that meets the strict latency requirements in an efficient 
and distributed way to cover the vast geographical area of the power grid. Edge computing leverages 
computing resources closer to sensors and users to carry out data analytics. It gains advantages for 
its ability to effectively reduce system delay, lighten the burden of cloud computing centres, improve 
system scalability and availability, and protect data security and privacy [3]. The ACES solution follows 
this trend, enabling microgrid deployments and a highly distributed energy grid. 
 

2.1 Use-case descriptions  
 
The ACES platform aims to demonstrate its advanced competencies through three pilots in the energy 
sector. In this section we describe the Use Cases (UCs) that will be deployed in the Greek Power 
Transmission System. 
 
UC1 – Market place and assets distribution 
 
The Energy Market improves the efficiency of the energy power grid and provides lower prices for the 
electricity customers. The TSO in Greece (IPTO) must check whether the energy transactions that take 
place are feasible. In order to carry out this task, the topology of the (power) network is examined. 
Taking as input the network topology with its constraints, the supply and the demand, an optimal power 
flow algorithm give us a rough estimation. Secondly, prices and other characteristics like ramp-up time 
or minimum-power are taken into account to solve a Market Clearing Algorithm. Finally, the prices are 
settled and the amount of each generation and consumption at which price point is set. This process 
takes place every 15 minutes according to Greek Energy Market Regulations. 
 
The output may also include power network information (voltage in buses, current flow in lines, 
generator production etc.). To assess the network dynamics, there are (power) load sensitivity 
algorithms that tests thousands of simulation scenarios and assesses how much load the network can 
withstand in each different part of the system. As long as the predicted load falls within the specified 
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limits then we can be confident that the voltage will also remain within the desired limits ensuring 
constant power supply to the consumers.  
 
UC2 - Distributed process management 
 
The penetration of Distributed Energy Resources (DERs) requires more fine-grained monitoring and 
control of the grid. As with the previous UC the first stage of data processing stems from optimal power 
flow. The input may vary from SCADA to PMU data. In combination with the network topology 
characteristics, many insights can be given through processing. Feeding these data into machine 
learning algorithms can provide both present and future estimations on the Power Grid. ML Health index 
algorithms provide an estimator for the state of the topology under monitoring. Enhancing this algorithm 
with rule-based processing of the data can constitute a Digital Twin of the Network. 
 
Proactive Automatic Generator Control (AGC) simulations can assist in proactively adjusting power 
production, which is especially useful for production units that require lead time before changing their 
production levels. Monitoring of data gives us leverage to establish alarms and set thresholds further 
aiding the AGC units that are registered in the network. 
 
Demand prediction algorithms calculate the expected demand in the upcoming timeframes (some hours 
ahead) which can solve the power flow ahead of time. The calculated generator contributions could be 
used to control the generator production ahead of time increasing the stability of the network. 
 
UC3 – IoT-based asset monitoring and management 
 
Power Network operators have periodic planning cycles for assets-maintenance. Periodic on-site 
inspections can be replaced by advanced metering, sensor data and GIS systems for real time outage 
detection, prediction, and more reliable investment planning and deferral. 

Taking as input SCADA data, the ML Health index Anomaly Detection algorithm identifies anomalies 
such as cases of low/high reactive power, high voltage instance etc. Anomalies could be used by the 
operators to analyse unexpected instances and design mitigation actions for the future, improving the 
health of the grid. The outputs of the algorithms include the list of anomalies that could trigger alerts 
for the operators. 

The typical data that are expected to be used for UC 3 include SCADA data (Active Power, Reactive 
Power, Voltage and Current) in per minute values. Outputs includes list of anomalies that trigger 
relevant alerts for the operators. 

 

2.2 How ACES supports the use cases 
 
Massive volumes of data are generated every second in smart grids. Advanced data analytic algorithms 
are required to transform the data into information and knowledge, which can be further utilized for 
grid operations and services. Generally, these data analytics depend on information and communication 
technologies (ICTs), which perform a critical role in data collection, transmission, and processing. 
Among the major functions of ICTs, computing determines how grid data analytics are executed and 
thus, it becomes the foundation for grid operations and services. Centralized cloud computing prevails 
as a feasible solution for the grid computing paradigm. In cloud computing, geo-distributed devices 
and equipment are connected to cloud data centres, making centralized decisions, and issuing control 
orders. Nevertheless, it suffers from several weaknesses, such as limited bandwidth resources, 
heterogeneous environments, and privacy concerns. To tackle this problem, another solution, edge 
computing, pushes the frontier of computation applications away from centralized nodes to the 
communication network’s extremes. Edge computing leverages computing resources closer to sensors 
and users to carry out data analytics. It gains advantages for its ability to effectively reduce system 
delay, lighten the burden of cloud computing centres, improve system scalability and availability, and 
protect data security and privacy [4]. 
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Following this paradigm shift, the Digital Transformation in the Energy Sector aims to facilitate its 
seamless operation, further exploiting both communication and computation advantages to increase 
efficiency. 
  
UC1 – Market place 
 
The decentralised architecture of ACES is an enablement opportunity for decentralised market 
management in the energy network. Local simulations will run market algorithms for various parts of 
the network that will communicate with each other trading flexibility and network characteristics. The 
edge capabilities of ACES provide the opportunity for calculating power flows in the different edge 
servers in parallel as well as selecting the optimal allocation of the computational workload.   
 
With the utilisation of a distributed edge computing architecture, we expect an improved performance 
of the marketplace algorithm as the optimal power flow simulations of the grids will be calculated in 
parallel across the various servers of the network. Additionally, we expect that we will be able to run 
additional and more complex modules within the 15-minute intervals which may prove useful in 
increasing the stability of the network.  
  
Expected behaviour of the ACES platform in this UC: 

● Seamless operation of the 3 markets (Attica, Crete, Cyclades)  
● Upscaling of performance through the other nodes 
● Expandability (adding extra regions) 
● No single point of failure 
● Safe (no disruption) and secure (data privacy) operation 

  
UC2 - Distributed Process Management - Automatic generator control 
 
Distributed Process Management can happen locally in the edge servers taking advantage of the 
decentralised architecture and its proximity to the data generation.  The computationally expensive 
algorithms (Digital Twin and ML Grid Health) will run in parallel for different parts of the network and 
the outputs for each grid will be combined to cover the configurations of the whole energy grid.   
 
Expected behaviour of ACES platform in this UC: 

● Host the monitoring and control functions application in the platform 
● Meet the latency requirements (seconds, sub-seconds) of the workloads 
● Scalability 
● No single point of failure 
● Safe (no disruption) and secure (data privacy) operation 

 
UC3 – IoT-based Asset Monitoring and Management 
 
The decentralised architecture of ACES provides the opportunity for parallel calculation of ML grid 
health algorithms, for the various parts of the energy grid. Trained models can be transferred across 
the various edge components enabling the transfer of patterns learned from the data. Processing can 
happen locally satisfying latency and efficiency requirements as the data will not need to be transferred 
to centralised cloud systems for further processing but only for historical storage. This could enable 
sub-second performance in the future as the incoming SCADA data streams become more granular. 
Expected behaviour of ACES platform in this UC: 

● Host the monitoring and asset management applications in the platform 
● Meet the latency requirements (seconds, sub-seconds) of the workloads 
● Scalability 
● No single point of failure 
● Safe (no disruption) and secure (data privacy) operation 

 

2.3  Use-case requirements 
 
Operating in a Utility Industry, TSOs need safe and seamless operation of the power grid. The EMDC 
that will be acquired through the project will not completely replace the current infrastructure but will 
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enable it to enhance the capabilities of a TSO to sustain and fortify its uninterrupted operation of the 
grid. The Use Cases demonstrated in the ACES platform should meet certain requirements along the 
following dimensions like benefits, security, availability, scalability, redundancy and latency. Those are 
described in the list below:  
  

1. (For all UCs) The solution should provide availability of at least 99.9%. 
2. (For UC1) The 3 market regions (Athens, Crete, Cyclades) should be fully operable in the ACES 

platform and have horizontal communication. 
3. (For all UCs) There should be no single point of failure. 
4. (For all UCs) The data used must remain private and secure. 
5. (For all UCs) The solution should be scalable so that in the future we can add additional 

locations across the energy grid as well as include additional assets in the network grid.  
6. (For UC1) When one EMDC fails other nodes must be used as hot swaps. 
7. (For all UCs) The latency of communication should be close to sub-second to enable real-time 

responses. 
8. (For UC1) the data should remain stored for at least 1 year. 
9. (For UC2 and UC3) the data should remain stored for at least 3 months. 
10. (For all UCs) The solution should be able to cater to diverse workloads, such as periodic, non-

predetermined time intervals, or near-real-time workloads. 
 
In Table 2.1 we describe the various use case components that will be available in ACES. We describe 
their type (periodic/occasional/continuous), we specify the frequency of running those components 
(real-time/every few hours/weekly, etc), and we indicate the timeframe for each component. 
 

Table 2.1: ACES processes including type, frequency, and timeframes 
 

PROCESS TYPE FREQUENCY TIMEFRAME 

Optimal Power 
Flow 

Periodic: workload spaced 
at regular time intervals – 

static load 

Seconds  
Seconds 

Load sensitivity 
analysis 

Occasional workload with 
no (or very small) changes 

or fluctuations 

Could run for each 
different load every 

time the specifications 
of the network change 
(addition/change of a 
generator / line etc) 

 
 

Elastic 

Market Algorithm 
- 

Periodic workload spaced 
at regular time intervals – 

static load 

Minutes-Run every 
15minutes 

 

 
Strict deadline 

Optimal power 
flow using 
demand 

prediction input 

Periodic workload spaced 
at regular time intervals – 

static load 
 

Hours-Run every 7h 
and / or every 48h 
Run after demand 

prediction module is 
run 

 
 

Elastic 

ML Health 
Algorithm - 

Machine Learning 
Based Anomaly 

Detection 

Training: Periodic workload 
spaced at regular time 
intervals – static load 

Scoring: Continuous scoring 
as SCADA data is retrieved 

Days-Training: run 
every week 

Seconds-Scoring: run 
real time 

 
Seconds 

(Inference) 
Elastic (Training) 
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Most Use Case components are considered periodic workloads spaced at regular time intervals. Their 
load is considered static and similar to the previous runs. The frequency of the runs varies from every 
15 minutes for power flow simulations to every 1 or 2 months for the retraining of the demand prediction 
algorithms.  For the Anomaly Detection algorithm, the scoring needs to happen near real-time as new 
data becomes available. There are also occasional workloads that occur in non-predetermined time 
intervals. For example, the load sensitivity analysis needs to run only when the system parameters 
change. Those workloads are not very frequent and not scheduled. 
 
The consideration of the above use case requirements enabled us to design and refine the ACES 
architecture we present next, accordingly. 
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3 Overview architecture 
This chapter provides the overview architecture of the ACES platform. This is defined by considering 
the use case requirements, as presented in the previous chapter; by aligning to the generic architecture 
of ongoing EU working groups and past or ongoing Edge-Cloud EU projects; and by considering the 
motivation to go beyond the state-of-the-art in aspects such as distributed control of disaggregated 
hardware resources, multi-cluster orchestration, decentralization, network programmability, and 
swarm intelligence. These aspects are mainly pushed by the increasing heterogeneity, complexity, and 
disaggregation of computational resources at the edge.  
 
In the ACES context, we consider that each Edge MicroDataCenter (EMDC) will be composed of several 
independent clusters, to provide better fault tolerance for sensitive workloads while enabling resource 
segregation and the usage of different clusters for single applications through seamless executions. 
Different EMDCs may be distributed geographically, to address lower latency and fewer data transfers 
through data locality. On this basis, ACES enables the seamless execution of single applications even 
upon the clusters of different EMDCs (east-west) while the connection from edge to Cloud (south-
north) is also supported.  
 
Furthermore, the possibility to enable automated control and self-maintenance of the system, bringing 
autopoiesis capabilities for EMDCs along with the AI/ML lifecycle management and the combination of 
AI/ML with the edge is another important focus of ACES, which is reflected through its various 
architectural components and integration choices. 
 

3.1 ACES concepts and background 
 
Following a bottom-up approach, ACES concepts are represented by the need to support the resource 
management of disaggregated consumable resources at the edge. The de facto standard in resource 
management from edge to cloud is currently Kubernetes. Hence, for simplification and standardization 
purposes, we will adopt this tool. However, this imposes some architectural constraints such as the 
fact that complete decentralization will be a challenging task [5]. The control of multiple Kubernetes 
clusters, in the context of one or multiple EMDCs, can be performed, enabling decentralized control by 
adopting and improving techniques [6] proposed in the context of Kubernetes federation (deprecated 
since the end of 2023) and the various new projects which are inspired by it and continue in similar 
paths (Nuvla, Karmada, Open Cluster Management, etc). Following these techniques, we will be able 
to also provide the connection between edge and cloud data centres. 
 
Figure 1.1 provides a high-level overview of the principal concepts of the ACES platform. In particular, 
at the bottom of the figure, we can see how the control of disaggregated resources will take place 
within one single Kubernetes cluster through the traditional centralized, hierarchical way, potentially 
adopting swarm intelligence scheduling policies; whereas in the higher layer, for the control of multiple 
clusters of one or multiple EMDCs, we opt for a fully distributed control of resources, bringing more 
innovation related to decentralization in all layers of resource management such as networking, 
storage, and scheduling based on swarms. 
 
To allow this to take place the ACES software stack is composed of a number of innovative systems 
software. Following the bottom-up view in Figure 3.1, the Operating System, the Resource 
Management, and the Container Management Interfaces will allow for better control of the different 
hardware instances (network interfaces, persistent volumes, etc) as disaggregated resources through 
containerization and correct partitioning. This will be completed by the single cluster orchestration 
which, as mentioned before, will be performed using Kubernetes standard with extensions in the 
scheduling layer to allow swarm intelligence algorithms to take place. Previous work [7] showed very 
promising results but to the best of our knowledge, to this date, no real implementation of swarm-
based scheduling has been implemented in Kubernetes.  
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Figure 3.1: High-level overview of the ACES platform 
 
Moving higher, to enable the execution of applications across multiple clusters, we need software to 
enable multi-cluster orchestration along with decentralized storage and networking. These aspects 
need to be taken into account, and even if various techniques exist as open-source solutions, there are 
open research issues and possibilities for improvements, especially taking into account the 
disaggregation of hardware and the particularities of the applications.  
 
An important aspect to be taken into account for optimal orchestration is the monitoring of resources 
and the observability of the application executions, as shown in the top left of the figure. These features 
will provide the necessary information and metrics to enable optimal resource selection and dynamic 
workload placement. Furthermore, security and privacy issues, at the top right of the figure, are 
primordial to be addressed in the context of ACES, including container, network, and ML security. 
 
Moving towards the top of the figure, an important aspect to be taken into account is the Cognitive 
Engine, which will provide autopoietic capabilities, enabling self-maintenance and other self-* 
properties (detailed in Deliverable D4.2), particular enhancements to ML models for the edge, usage of 
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edge computing advantages for ML models along with everything related to the ML lifecycle 
management of the platform. This engine will enable the techniques for MLOps for all the systems' 
internal AI/ML needs and will also offer the necessary services for application development.  
 
To enable the design of applications to be executed on the platform, ACES will need to provide the 
right tools to allow users to prepare their applications. This is shown at the top level of the figure. For 
this to be feasible we opt for workflow/graph-based application design which is a typical way to enable 
the expression of scientific and data analytics calculations. The application design also needs to 
consider data management. Finally, a frontend interface connected to an authentication/authorization 
panel is needed to enable the connection, the permission controls, and the high-level view of the 
different services offered to users and admins. 
 

3.2 High-level view of the architecture  
 
Following the initial concepts and background, this section provides a high-level view of the 
architecture from different angles. First, we provide the architecture explaining the different 
functionalities that are needed on each layer. Then, we translate this to generic components, per layer. 
Finally, we describe the type of tools to be explored. These views are then completed by a closer look 
at the hardware architecture and the application structure. 
 

3.2.1 Functional architecture 
 
The functional architecture, presented in Figure 3.2, provides the physical layer with the hardware 
components and their different characteristics. On the cluster layer, we can see the Resource 
Management and Single-cluster Orchestration blue boxes representing both the node and single 
cluster level functionalities. The important aspects we expect here, besides the typical node resource 
management features such as cgroups, are related to the ways containers will be deployed upon the 
nodes, how persistent volumes will make use of different partitions of nodes’ disks, and how networking 
will be virtualized to be used in the context of containers communication across nodes. Furthermore, 
in terms of orchestration, the way resources will be selected for particular workloads and the way tasks 
will be placed upon the resources, along with different constraints/SLAs/SLOs policy usage, are 
particularly important to better use of the underlying heterogeneous resources in the context of edge-
cloud related platforms. 
 
The multi-cluster layer, the green box in the figure, provides the multi-clustering tools, and how the 
different clusters will be connected and controlled to enable decentralized storage, P2P networking, 
and adapted distributed workload placement. These features will allow the connection of different 
clusters between one EMDC or more EMDCs, along with possibly the connection towards the Cloud.  
 
On the left side of the figure, we can view the monitoring and observability box, which defines the need 
for collecting the metrics from different software and hardware per node, aggregated on the cluster 
level and per cluster aggregated for multiple clusters. On the right side of the figure, we express the 
needs for security and privacy spanning across all layers and features of the platform. 
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Figure 3.2: ACES functional architecture overview 
 
Moving higher at the layer of Development and System Control layer, the purple box, the Cognitive 
Engine expresses the needs to provide functionalities to enable the AI/MLOps of the platform, which 
will be used not only by the internals but also offered as a service to be used by the ACES users. 
Furthermore, this layer offers the higher level of user interfacing by expressing functionalities such as 
the frontend interfaces, the ways to build automations based on workflows, and the user and system 
level data management. 
 
Finally, the application layer shows the level of ACES use cases which define how they will be 
expressed as ACES applications to be executed upon the platform. 

 
3.2.2 Components-based architecture 
 
Based on the previous Functional architecture, Fig. 3.3 provides the different components that are 
derived from the functional needs of the platform. There is a one-to-one mapping to the functionalities 
mentioned in the relevant boxes of the functional architecture. It is interesting to see how monitoring 
and security boxes are perpendicular to the different layers since they are related to all different 
aspects of the system software. This architecture focuses on the most important components of the 
ACES edge-cloud software stack and provides the principal areas upon which some innovation will be 
brought in ACES. 
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Figure 3.3: ACES components-based architecture overview 
 
This component-based architecture diagram will be used as a reference moving forward in ACES, and 
an update of this architecture will be provided in the upcoming deliverable D2.2a. 
 

3.2.3 Tools-based architecture 
 
Based on the previous components-based architecture, Fig. 3.4 provides the tools-based architecture, 
which shows the view from the angle of possible tools to be used to cover the functionalities demanded 
by the components.  
 
In particular, it is interesting to see that while Linux OS takes the place of the node operating system, 
Kubernetes brings the cluster operating system and covers both the resource management and the 
single cluster orchestration engine. Of course, different independent tools will be used to cover each 
functionality, such as containerd or CRIO to provide the container runtime interface, or Cilium for the 
Container Network Interface.  
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Figure 3.4: ACES tools-based architecture overview 
 

In a similar way, workload placement will be brought by different Kubernetes schedulers. ACES will 
innovate by bringing specific swarm-based scheduling policies, as will be discussed in upcoming 
sections. Furthermore, multi-cluster control will be brought by the open-source software nuvla.io, 
which will be enhanced with swarm-based scheduling policies for workload placement. On the multi-
cluster networking and service mesh side, tools such as Submarriner or Istio will enable container 
communications, in the case of workflows which span their execution across different clusters with 
different networks. Monitoring and observability will be based upon Prometheus, which will also cover 
multi-clustered aggregations through tools such as Thanos. 
 
On the security side, various software will be used and enhanced in the context of ACES, as we will see 
in Chapter 10. For example, techniques such as OAuth2 will be used to enable the secure access to 
users on the platform. Several innovations will be brought forward in ACES in this space, including in-
network security advances, increasing the robustness of ML training and inference, among others. 
 
The above tools-based architecture shows the main guidelines, but the definition of the components 
and tools to be implemented will be refined in the upcoming deliverable D2.2a on ACES kernel 
components. 
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3.2.4 EMDC and hardware architecture 
Technology providers are continuously innovating to reduce the complexity of tightly linked hardware 
components and trade-offs that need to be made because of these tight links. More loosely linked 
hardware components allow a wider application of swarm technologies. The recent technological 
innovations relevant to powerful edges are: 

• Storage: NVMe (Flash storage) over Fabric, creates a low latency storage pool from all NVMe 
flash storage within an EMDC and within a network of EMDCs connected via WANs and LANs. 
This storage pool can be accessed by any server within the EMDC and EMDC network at low 
latency. NVMe/TCP is the latest addition to NVMe-oF and makes it possible to use NVMe-oF 
across a standard Ethernet network without having to make configuration changes or 
implement special equipment. (Note: the management of NVMe/TCP storage can be offloaded 
from the CPU to a DPU to free up the CPU for other work). 

• Composable infrastructure with CXL: Disaggregated CXL 1.1 memory will ship with Intel 
Sapphire Rapids Xeon Scalable, AMD's fourth generation Epyc Genoa and Bergamo processors, 
and enables memory to be attached directly to the CPU over the PCIe 5.0 link. Vendors 
including Samsung and Marvell are already planning memory expansion modules that slot into 
PCIe like GPU and provide a large pool of additional capacity for memory-intensive workloads. 

In light of recent and future technologies and given the limited local capacities of an EMDC, the scarce 
resources that need optimized utilization are, primarily, the various cores (CPU, FPGA, GPU, Custom 
ASIC) of the heterogeneous EMDCs. Second, memory and caching storage. Third, the internal network/ 
bandwidth. Additionally, the objective of ACES is to adopt CXL as much as possible and build this 
technology in edge data centres roadmap, and develop the intelligence to manage CXL efficiently. 
 
Following the initial ACES concepts, Fig. 3.5 provides a zoom on the high-level hardware architecture, 
featuring the way we envision that EMDCs will be structured internally. On one side, by providing three 
different independent clusters connected in a fully distributed manner; on the other side, by different 
disaggregated hardware resources to be used in the context of a single Kubernetes cluster. 
 

 
     

Figure 3.5: ACES tools-based architecture overview 
 
The architecture will be similar on the other EMDCs. The connection between different EMDCs will be 
performed following similar techniques such as those for internal EMDCs.  
 

3.2.5 ACES application structure 
 
The applications in the context of ACES are represented by workflows, which are graphs representing 
a sequence of tasks or microservices to be executed upon the computational resources. Initially, simple 
sequence workflows will be supported, but if the use cases-related workflows evolve towards more 

https://www.snia.org/educational-library/nvme-protocols-transports-deep-dive-2021
https://www.techtarget.com/searchstorage/feature/NVMe-over-TCP-details-and-features-you-need-to-know
https://www.theregister.com/2022/05/10/samsung_512gb_cxl_ram_module/
https://www.theregister.com/2022/05/18/marvell_cxl_composable/
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complicated workflows (e.g., with loops or parallel phases) then this will need to be supported through 
the workflow management system. Figure 3.6 provides the structure of the typical ACES application, 
composed of different microservices which are connected through specific dependencies among them. 
This is the typical and most common way that data centre-based data analytics and scientific 
calculations are expressed. 
 

 
             

Figure 3.6: ACES application structure 
 
Figure 3.7 provides the instantiation of the execution of an application upon the pool of consumable 
resources of the Edge Micro DataCenter. Each microservice will be allocated several consumable 
hardware resources such as CPUs, Memory, GPUs, etc., based on their needs, and once each 
microservice execution is performed its outputs are used as inputs for the following microservice to be 
completed. The dependencies between them can be defined following various patterns and based on 
the hardware architecture we provided previously; ACES will allow the execution of microservices to 
take place on different EMDC clusters. This will be enabled through the ACES multi-cluster networking 
capabilities. 
 

 
             
Figure 3.7: ACES application executed upon an EMDC 

 
Since ACES adopts Kubernetes as the cluster operating system, we align to the concepts used in K8S. 
In particular, a microservice in ACES will be expressed by a K8S pod which will contain one or multiple 
containers executed upon one single node. Once the execution is instantiated, specific resources will 
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be allocated to allow the pod to be executed correctly. Figure 3.8 provides the view of an ACES 
microservice along with the different internals, to better understand the connections among the 
different concepts. 
 

 
     

Figure 3.8: ACES microservice 

 
3.3  Overview of features and innovations 
 
In this section we present an overview of the features and expected project innovations, grouped by 
topic. 
 
Resource Management 
 
On the Resource Management side, ACES will bring features related to the optimal control of Edge 
Micro DataCenters single clusters through Kubernetes, adapted for the disaggregated resources and 
the workflow-based applications of ACES. This entails making use of specific Kubernetes adopted CRI, 
CSI, CNI tools and device plugins to cover the needs for resources heterogeneity and application 
complexity. Furthermore, it will offer control of multiple Kubernetes clusters by making use of tools 
beyond Kubernetes federation, enhanced with decentralization and adapted scheduling. 
 
Concerning innovations, the decentralized control, and the implementation of swarm intelligence for 
scheduling on single cluster, along with high availability and scalability of the control-plane, and the 
optimization of autoscaling to better function at the edge, are some directions upon which the focus 
will be driven. Furthermore, in a multi-cluster setting, sophisticated scheduling optimizations are 
needed to manage deployments across clusters efficiently. 
 
Data Management 
 
The ACES data management component is critical for maintaining the operation of the platform, 
handling all the data required for orchestration and AI reasoning, which gives the system its self-
managing qualities. It works with the ACES knowledge model, which encapsulates supply, demand, and 
runtime information, all essential to represent the architecture's resources, application requirements, 
and dynamic status. Key requirements for this component include handling various data types and 
relationships efficiently within a knowledge graph, accommodating time-series data, utilizing 
decentralized storage solutions for scalability and locality, ensuring data consistency, availability, fault 
tolerance, and security across geographically distributed environments. 
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With regard to innovations, the ACES data management component embodies a novel approach to 
distributed data handling that supports advanced cloud-edge computing environments. Notable is the 
potential use of knowledge graphs for representing data models, which can simplify complex 
information management and provide agility in querying and retrieving data. The emphasis on 
decentralized storage accentuates a cutting-edge model for data distribution that enhances scalability 
and preserves privacy. Another innovative perspective is the synchronization within a decentralized 
storage system, which aims to maintain consistency of the knowledge base without full replication, 
allowing data to remain local but universally accessible and up-to-date. Additionally, the seamless 
interplay with other ACES components, like swarm intelligence, highlights a dynamic and adaptive 
ecosystem built for high performance and resilience in cloud-edge orchestrations. 
 
Orchestration 
 
For the orchestration of workloads in an EMDC, we propose a decentralized approach that presents a 
key innovation: central to our approach is the use of swarm agents, representing demand and supply 
entities on different hierarchies. These highly decentralised agents collaborate within an EMDC 
environment, orchestrating processes such as workload placement, storage management, and caching 
optimization. The interaction between the agents is orchestrated through swarm intelligence 
algorithms. For example, demand swarm agents autonomously seek out the most suitable node for 
workload placement, while supply swarm agents determine the optimal workload to process based on 
available resources and capacity. This collaborative decision-making process enables the system to 
efficiently allocate workloads to nodes, optimizing processing, latency, and resource utilization. 
 
Thus, in ACES we propose the edge continuum with its characteristics and limitations as a novel field 
of application for swarm intelligence leading to a distributed, emergent scheduler. 
 
Networking 
 
In terms of features, the ACES network architecture emphasizes intelligent, scalable, and secure 
networking within an edge-computing framework driven by a set of key requirements. It focuses on 
service connectivity with QoS prioritization, high network observability through advanced telemetry, 
and optimized throughputs and latencies for responsive edge computing capabilities. The design 
incorporates a closed-loop network control mechanism that harnesses machine learning analytics for 
dynamic network adaptability, ensuring that ACES can efficiently scale up as the edge infrastructure 
expands. It also features decentralized control to avoid single points of failure, thus enhancing network 
reliability. Moreover, integration with Kubernetes and programmable network switches aid in the 
management of multi-cluster networking, allowing for dynamic scaling and pod mobility to ensure 
service continuity across various edge environments. 
 
Concerning innovations, ACES will leverage a software-defined networking (SDN) model, with the 
control plane dynamically orchestrating the multi-cluster network, integrated with machine learning to 
establish a closed-loop control system. The network emphasizes fault tolerance through replicated 
SDN controllers, scalability by distributing control functions, and security through AI-driven 
mechanisms. Furthermore, specific programmable data plane devices will be employed for network 
function acceleration, advanced telemetry, and executing swarm-based orchestration mechanisms 
directly on network devices, showcasing a shift towards utilizing in-network computation for enhanced 
edge intelligence. These data plane innovations offer an adaptable, high-performance network capable 
of sophisticated monitoring and real-time data analysis, as well as a more intuitive control over the 
complex interactions between network components and edge services. 
 
Monitoring and Observability 
 
The ACES monitoring and observability component will enhance the supervision of complex, 
decentralized systems with disaggregated hardware resources. It will include a storage component for 
time-series data, a Retrieval Worker for pulling metrics, and an API server for data retrieval. The 
architecture will incorporate a Push Gateway for alternative data ingestion from ephemeral workloads, 
a Data Forwarder for communicating with other ACES components or third-party tools, and an Alert 
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Manager for managing notifications based on anomalies detected by an Anomaly Detection submodule. 
The Service Discovery will automate the identification of targets for monitoring, while Data Analysis, 
Export and Visualization tools will facilitate the analysis and display of data. These components ensure 
that all ACES resources can be effectively monitored across the various layers, and types of software. 
The architecture will enable the handling of a variety of data such as traces, logs, and metrics while 
providing a framework for both push and pull data collection methods.  
 
Concerning innovations, the ACES monitoring and observability framework will provide a particular 
handling of network data and event-driven monitoring. It may leverage on the computational 
capabilities of network devices such as programmable switches and SmartNICs/DPUs to perform fine-
grained, flow-based metric computations directly within the data plane, facilitating richer telemetry 
data without traditional sampling limitations. This approach will enable network operation tasks, such 
as traffic engineering or intrusion detection, to be more accurately and promptly performed. The 
framework also plans to integrate event-driven monitoring through a novel change detector primitive 
using memory-efficient sketches, enabling rapid and space-efficient change detection in network 
traffic. This capability ensures the monitoring system can react responsively to significant changes in 
network conditions, in contrast to the fixed periodic monitoring intervals, while enhancing operational 
awareness and responsiveness within the ACES platform. 
 
ML-based cognition 
 
In terms of features, the Cognitive Framework in the ACES project offers a suite of advanced features 
to enable autopoietic capabilities in edge data centers (EMDCs), promoting self-maintenance and 
adaptive management of resources. It integrates continuous learning, predictive analytics, and machine 
learning (ML) lifecycle management, allowing systems to learn from the environment and user 
interactions for optimal performance. The framework's feedback loops allow for proactive, data-driven 
decision-making, aligning with broader organizational goals. Techniques such as federated and split 
learning support collaborative, privacy-preserving model training, while the integration of swarm 
intelligence with AI/ML enhances distributed resource management. Explainable AI (XAI) increases 
transparency and trust in automated decisions, and the MLOps component ensures efficient and 
standardized ML model lifecycle management across the platform. 
In terms of innovation, the ACES platform introduces novel approaches such as employing autopoiesis 
for self-sustaining systems, leveraging edge-specific, lightweight ML models that navigate 
computational and latency constraints, and embracing collaborative methodologies like federated 
learning for data privacy. The combination of AI with swarm algorithms exemplifies a cutting-edge 
computational method for optimizing distributed systems, and integrating XAI provides transparency 
in automated decision-making. The platform’s MLOps strategies reflect a forward-thinking approach in 
managing the complex and evolving landscape of ML models, emphasizing efficiency, reuse, and 
consistent monitoring throughout the ML model lifecycle. 
 
Security and Privacy 
 
The main features related to security include a multi-layered security and privacy architecture designed 
to protect cloud-edge services. Key focus areas include robust authentication processes with 
anonymous schemes and pseudonyms, ensuring the availability and integrity of services through fault-
tolerant replication and auditing tools, network and hardware security using ML-based attack detection 
and innovative network switches, node and container security with advanced anomaly detection 
models and defence strategies, and machine learning security to counter data/model poisoning and 
inference attacks. The system emphasizes compliance with strict privacy regulations like GDPR and 
incorporates components like zero-trust environments, non-revocation proofs, and secure two-party 
computation to safeguard data privacy. 

The main innovations in ACES revolve around enhancing security in cloud-edge systems against 
sophisticated cyber threats. Noteworthy advancements include the development of anonymous 
authentication methods that comply with privacy laws and accommodate non-revocation proofs, and 
an innovative auditing tool that uses cryptographic proofs to pinpoint data locations with high precision. 
The incorporation of an ML-based attack detector that operates within a network switch stands out as 
a performance-centric measure to detect zero-day attacks. Furthermore, the container security 
framework employs deep-learning-based dynamic anomaly detection to protect against new threats, 
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and sophisticated strategies to defend ML systems, like model clustering and secure two-party 
computation, showcase novel approaches to fortify systems against complex attacks such as 
backdoors and inference breaches in distributed environments. 
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4 Resource management  
Resource management holds a very important place in the software stack of distributed systems since 
it is responsible for providing the necessary computing power to user jobs based on their needs and 
the resources availabilities. The advent of Cloud and Big Data systems along with the usage of 
microservices and containerization brought the needs of environment provisioning and auto-scaling. 
Hence, the management of applications’ lifecycle orchestration became an integrated part of resource 
managers. Traditional HPC resource managers such as Slurm and PBSPro do not provide integrated 
support for environment provisioning and hence no orchestration is feasible. However, state-of-the-
art resource managers such as Mesos, Yarn and Kubernetes enable the deployment of containers and 
allow the applications’ lifecycle management.  

4.1 Background and principal concepts 
Some studies on orchestrators discuss the various advances made in scheduling [8]. Kubernetes [9] 
and Mesos [10] are two of the most advanced open-source orchestrators. Kubernetes performs the 
resource management of a cluster of computational nodes and simplifies the deployment and 
management of containerized applications. It is based on a highly modular architecture which abstracts 
the underlying infrastructure and allows internal customizations such as deployment of different 
software-defined networking or storage solutions. It supports various Big Data frameworks such as 
Hadoop MapReduce, Spark, and Kafka and has a powerful set of tools to express the application 
lifecycle considering parameterized redeployment in case of failures, auto-scaling, state management, 
etc. Furthermore, it provides advanced scheduling capabilities and the possibility to express different 
schedulers per job. 

Kubernetes orchestrator enables the support of Software Defined Infrastructures and resource 
disaggregation by leveraging on container-based deployments and particular drivers based on 
standardized interfaces (Container Runtime Interface [11], Container Storage Interface [12], Container 
Network Interface [13] and the device plugins framework [14]). These interfaces enable the definition 
of abstractions for finer-grain control of computation, state and communications in multi-tenant 
environments along with optimal usage of the underlying hardware resources.  Open-source solutions 
such as k3s [15] where Kubernetes heavyweight internal procedures have been stripped down are 
more adapted for the edge. Another open-source alternative that could be interesting for the 
deployment of individual autonomous edge resources is Canonicals’ microk8s [16] which can be 
evaluated for the mobile edge resources case, needing to orchestrate tasks and workloads 
autonomously when disconnected from the network. In a similar way, the multi-cluster special interest 
group (SIG) community of Kubernetes has been working on the federation v2 project [17] on integrating 
multiple clusters under a federation while providing a generic scheduling engine that, based on policies, 
is able to make decisions on how to place arbitrary Kubernetes API objects. While this project has 
recently been deprecated, systems such as Nuvla, Karmada and Open Cluster Management enable 
features of the federation which, along with networking techniques such as Submarriner and Istio 
systems, can enable the execution of applications across multiple clusters. An interesting solution 
combining edge system and multi-cluster control is provided by Oakestra [18], a hierarchical, 
lightweight, flexible, and scalable orchestration framework for edge computing. Oakestra features a 
federated three-tier resource management, delegated task scheduling, and semantic overlay 
networking proposed as an alternative for Kubernetes. 

Asuncao et al. [19] studied resource management challenges regarding hybrid deployments including 
IoT and Edge. They consider that managing task scheduling and allocation of heterogeneous resources 
along with adapting an application to current resource and network conditions will require the 
development of new schedulers and that allocations have to be dynamic enough to support migration. 

Resource management in a container-based cluster environment is a complex but essential aspect of 
ensuring that applications and services deployed across the cluster perform optimally and reliably. 
Containers have emerged as the standard unit of deployment in edge-clouds; hence, managing the 
resources they consume (such as CPU, memory, storage, and network bandwidth) becomes crucial for 
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both the stability and efficiency of the entire system. Containers are lightweight, usually ephemeral, 
and they often run in dense multi-tenant environments. Due to their transient nature and the dynamic 
workloads they typically support, effective resource management strategies must be used to address 
the varying demands of different applications while utilizing the underlying infrastructure resources 
efficiently. 

Kubernetes is the de facto standard for Cloud or Edge resource management and container 
orchestration, with a rich set of features for managing all types of heterogeneous resources. It 
automatically schedules containers based on resource requirements and availability, and handles the 
lifecycle of containers, enabling the configuration of resource limits and requests for containers, while 
providing auto-scaling and self-healing capabilities. In addition, it provides storage and network 
orchestration allowing storage to be managed dynamically while defining how services communicate 
among them. 

ACES will adopt Kubernetes and its APIs to control the resources on a single cluster level as shown in 
the high-level view of the architecture. The resource management will be performed considering 3 
main blocks or resources: Computing, Storage and Networking. Each of these plays a vital role, and 
interfaces like Container Runtime Interface (CRI), Container Storage Interface (CSI), and Container 
Network Interface (CNI) help abstract and manage these resources efficiently. 

 

4.1.1 Runtime 
 
Runtime resources in Kubernetes entail managing the lifecycle of containers and ensuring they have 
the necessary compute resources to function, such as CPU and memory allocations. The orchestration 
of these containers is crucial to the smooth operation and scaling of applications. The CRI abstracts 
the container runtime from the kubelet (the primary agent that runs on each node), allowing Kubernetes 
to use different container runtimes without requiring integration into the Kubernetes codebase. It 
defines a set of RPC calls for functionalities such as container and image operations. The kubelet uses 
CRI to manage container lifecycle events like starting and stopping containers, as well as handling their 
resource usage by adhering to the specified resource limits and requests. 
 

4.1.2 Storage 
 
Kubernetes storage management is related to the provisioning, attaching, and managing of the lifecycle 
of persistent storage used by applications. Automating these tasks and providing high availability of 
data is essential in cloud-native environments. CSI standardizes and abstracts the way storage 
providers interact with Kubernetes clusters. Through the standard API, the different storage plugins 
provided allow Kubernetes to work with a wide array of storage solutions. CSI facilitates volume 
provisioning, de-provisioning, mounting, unmounting, and snapshot operations initiated by Kubernetes. 
This enables Kubernetes to manage persistent data storage across different storage providers in a 
unified manner. 
 

4.1.3 Networking 
 
The Network management in Kubernetes ensures seamless container-to-container communications, 
Pod-to-Pod communications across different nodes, and external access to services running inside the 
cluster. A reliable and secure networking setup is fundamental to distributed applications' architecture. 
The CNI abstraction provides a standard for configuring network interfaces for Pods. By using a plugin-
based architecture, CNI allows for various networking solutions that can be used with Kubernetes, 
which enables it to support different network models in alignment with organizational needs and 
policies. CNI plugins manage the assignation of IP addresses to Pods, set up network routes, and 
configure network namespaces. This allows Kubernetes to abstract the complexity of the underlying 
network topology and operations from the users and operators of the cluster. 
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4.1.4 Linux OS 
 
Kubernetes makes use of cgroups and namespaces, Linux kernel features that enable the isolation and 
allocation of the CPU, memory, block I/O, and network resources for containers. Furthermore, it 
provides different security contexts which allow the definition of privilege and access control settings 
for Pods and containers, leveraging underlying Linux security features like SELinux, AppArmor, and 
seccomp. Finally, the Kubelet agent which runs on each Kubernetes worker node monitors its 
consumption and availability. 
 

4.2 Resource selection and workload scheduling  
 
In the ACES context we opt for decentralization. Thus, a possible direction would be to completely 
decentralize Kubernetes as studied in [5]. However, enabling this in Kubernetes is hard, with arguable 
value at this stage. A better technique has been adopted by the researchers of the Oakestra system 
[18], who introduced a new resource manager and orchestrator inspired by Kubernetes but built from 
the ground up for the edge. This study highlights the advantages in terms of scalability at the edge, 
when segregating the disaggregated resources across a larger number of clusters and enabling the 
deployment of applications across different clusters. This actually justifies and motivates further our 
design to opt for multiple clusters in one EMDC. 
 
Even if Oakestra seems a very adapted solution for the edge, in ACES we will use Kubernetes as a 
single-cluster resource manager, since we are interested in the standardization capabilities. However, 
our goal is to adopt swarm intelligence algorithms to perform resource selection and workload 
placement. Related work [20] demonstrated impressive speedup; however, these were limited to 
simulation-based implementations and analyses. To the best of our knowledge, as of the present date, 
there has been no tangible realization of swarm-based scheduling within the Kubernetes framework. 
 
Our approach entails collecting different historical and real-time monitoring data related to the EMDC 
resources, and combining them with the applications and microservices requirements, to perform the 
resource and workload matching. We give some detail on the swarm-based policy we plan to explore 
in Chapter 6, and how to integrate this policy as a scheduling plugin within Kubernetes. 
 

4.3 High availability 
High availability for the Kubernetes control plane is primordial to guarantee continuous management of 
cluster resources, even in the event of individual component or node failures. Achieving such reliability 
requires a specifically designed architecture where the critical control plane components—such as the 
kube-apiserver, etcd datastore, kube-controller-manager, and kube-scheduler—are deployed in a 
highly available configuration. This can involve running multiple replicas of each component across 
several nodes to mitigate the risk of correlated outages. 

In the context of Kubernetes single cluster resource management, the API server acts as the gateway 
to the control plane, managing and persisting the state of the cluster in the etcd database. Etcd must 
also be reliably replicated and consistently maintained. A high-availability setup often includes a load 
balancer that directs traffic to the API server instances evenly, ensuring that the loss of a single server 
does not prevent access to the control plane. The controller-manager and scheduler, even if they are 
less stateful than the API server and etcd, also need replication to provide resilience against individual 
process failures. 

When deploying a high-availability control plane in a decentralized edge computing environment, the 
complexity increases due to broader physical distribution and possibly variable network conditions. 
Research in this area requires innovations to ensure that the distributed control plane components 
efficiently reach consensus while respecting the latency and bandwidth constraints typical of edge 
networks. This may involve developing lightweight consensus protocols that are optimized for edge 
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conditions. Another possible direction is to maintain a coherent and synchronized state across 
distributed etcd clusters, possibly by employing novel data replication techniques or tailored 
consistency models through eventual consistency with an acceptable convergence time, considering 
edge constraints. 

 

4.4 Scalability and performance 
 
Kubernetes excels in managing containerized applications with its built-in scalability features. The 
platform is designed to scale not only in terms of handling more workloads with the addition of more 
nodes and pods but also in its control plane capabilities which oversee the operation and management 
of the cluster itself. The API server, scheduler, etcd, and controller manager all play pivotal roles in the 
control plane's handling of the increasing scale. Scaling out the API server instances and etcd cluster 
(which stores all Kubernetes cluster data) can help maintain performance as the scale of the system 
increases. 
 
Kubernetes allows applications to scale through the use of ReplicaSets, Deployments, and StatefulSets. 
It can efficiently manage the desired number of pod replicas to handle workload demands. However, 
the actual performance depends on the capacity of the underlying nodes and how they are managed 
in terms of pod scheduling and network configuration. 

Autoscaling is another crucial aspect where Kubernetes uses the Horizontal Pod Autoscaler to adjust 
pod counts based on specific metrics and the Cluster Autoscaler to add or remove nodes based on the 
needs of the workload. Networking becomes even more important as the number of services and 
interactions between components grows. The storage system must also maintain scalability, ensuring 
data remains consistent and available during scaling operations. 

Performances are directly impacted by how well all these scalability features function and by the 
underlying infrastructure's performance characteristics. This becomes apparent when considering the 
unique challenges presented by decentralized edge environments, where Kubernetes is expected to 
operate across distributed nodes that may be geographically dispersed.  

In the context of ACES, the goal will be to enable managing large numbers of smaller, more distributed 
clusters while still maintaining performance and reliability. This can be done by optimizing the control 
plane components for operation across widespread and potentially unreliable networks. 

Another important research direction is related to advanced autoscaling algorithms to enable flexible 
adaptation to the dynamic conditions at the edge. Based on historical data on resources monitoring 
and workload profiling, specialized ML-enhanced techniques may anticipate workload changes and 
predict the need for autoscaling to improve the turnaround time of jobs and the performance of the 
system. 

4.5 Multi-Cluster control and scheduling optimizations 
Multi-cluster control involves overseeing multiple Kubernetes clusters as coherent parts of a larger 
computational resource pool. This requires a unified control plane capable of harmonizing operations, 
sharing critical configurations, synchronizing deployments, handling failover, and facilitating resource 
sharing across clusters.  

In the ACES context, each EMDC will be composed of a number of Kubernetes clusters. Applications 
will have the ability to be executed upon the resources of multiple EMDCs, hence the coordinated 
control of multiple Kubernetes clusters is an important aspect. KubeFed has been traditionally the 
technique promoted by the Kubernetes community for this purpose, but since its deprecation beginning 
of 2023, the community has driven its focus on various open-source tools similar to KubeFed that try 
to solve various issues of multi-clustering. Tools such as nuvla, karmada, and open cluster management 
for the high-level control and execution of jobs on multiple Kubernetes clusters, or submariner and Istio 
for multi-cluster networking, are tools that will be explored and enhanced in the context of ACES. 
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Techniques such as the ones proposed by Larsson et al. [6], enabling decentralized control in a 
federated multi-cluster setting can be adopted and enhanced with tools such as nuvla. 

In more detail, scheduling in a multi-cluster environment is a complex task. The scheduler needs to 
have a global view to make optimal decisions about where to place workloads. It needs to take into 
account a range of factors beyond what is typically considered in a single cluster, including geolocation 
of clusters, network latency, data locality, edge node capacities, cluster-specific policies, and possibly 
different optimization objectives. 

Optimizations for multi-cluster scenarios are essential for improving the overall efficiency and 
performance of Kubernetes at the edge. Enhancements in this area could involve the creation of more 
intelligent scheduling algorithms, methods for more efficiently managing a large number of small 
clusters, and improved paradigms for cluster federation. 

Creating advanced scheduling strategies that can effectively allocate workloads across multiple 
clusters needs to consider cluster load, real-time resource availability, and network topology for 
optimal workload placement near the data sources, to minimize latency and maximize performance. 
ACES brings forward a completely decentralized setting across the different Kubernetes clusters, 
whose goal is to make use of swarm intelligence algorithms to perform the selection of resources and 
workload scheduling. In ACES, the development of the actual multi-cluster scheduling algorithm will be 
explored in the context of Orchestration (Chapter 6), but the development of the components to 
perform the scheduling in the multi-cluster setting will be part of the resource management component. 

Finally, another important direction considering multi-clustering are the data management approaches 
to be used for the control plane of multiple Kubernetes clusters. This control plane needs to be 
decentralized and has to maintain consistency and availability of data across multiple Kubernetes 
clusters at the edge. Research must consider data replication, partitioning, and synchronization to 
provide seamless data access despite the geographical distribution of clusters. Hence, a close 
collaboration with Data Management (Chapter 5) is needed to effectively address the issues related to 
decentralized control of multiple Kubernetes clusters. 
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5 Data management  
The data management component is in charge of managing all the internal data and information that 
needs to be persisted by the ACES platform in order to run its operation smoothly. This component 
provides a core part of the platform backend, ensuring the knowledge base is kept for every ACES 
cluster and EMDC. 
 

5.1 Managed data 
 
The data management component will be responsible for managing all the data that will be relevant for 
the orchestration and AI components to perform their reasoning and provide autopoietic qualities to 
the overall system. This includes all information relevant to be captured as features, or characteristics 
algorithmically employed. A complete overview of the information required by these elements, referred 
to as the ACES knowledge model, is presented in D3.1. In contrast, there will be no application storage 
being managed. These data elements associated to specific deployed elements will be managed as 
part of the orchestration component, as described below. 
 
The ACES knowledge model provides information about the supply, demand and runtime aspects of 
ACES. The supply represents the fundamental concepts that will be used by the agents to reason about 
the ACES platform elements. This includes the architecture components, physical and logical entities 
presented in the environment. The demand model captures the applications that need to be presented 
in the environment, deployed on Kubernetes. The model includes all additional information regarding 
their requirements to function correctly, as well as the SLOs and other non-functional characteristics 
that must be satisfied. Finally, the runtime model expands these concepts with temporal information 
about the events and status of each element of concern. This information directly feeds from the 
monitoring sources that are managed in that component.   

 
5.2 Design requirements 
 
The data management component is designed based on several requirements that shape its role, 
structure, and underlying technologies. We briefly state here the main requirements that were specific 
to this component of the architecture.  
 

5.2.1 Nature of data 
 
As described in D3.1, the model will be represented as knowledge graphs following the property graph 
specification. There are multiple formats for representing and querying these structures, but the data 
management component must support both its efficient storage, powerful query retrieval, and flexibility 
to capture all the required types of data and relationships. 
 
In addition, the runtime information represented as time series data must be captured in a mechanism 
that is both fitting the monitoring component and enabling cross referencing with the graph information 
model.  
 

5.2.2 Decentralized storage solution 
 
The ACES platform is designed to be able to operate in geographically distributed environments, with 
multiple EMDCs and cluster working in an orchestrated way to provide a whole platform. For an 
effective operation of such a system in a scalable and potentially privacy preserving way, the whole 
ACES knowledge base will be stored using a decentralized solution. Keeping relevant data to the 
geographical location where they were initially originated will greatly improve the overall scalability and 
privacy. This solution will be effectively exploited in turn by the ACES reasoning components that can 
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operate, as well from a decentralized model, such as the swarm agent models presented in the 
orchestration component.  
 

5.2.3 Data consistency, partition, and synchronization 
 
At every location of the ACES system, the knowledge base must have a consistent view. Conflicts 
within this view of the world would cause further problems among the different reasoning agents. 
Therefore, the information required at every location will be consistent with the latest view. It is 
important to note however that the data management system will not have fully replicated information 
at every management node. Instead, the minimum goal is to ensure all the required knowledge is 
present and consistent at each location.  
 
Regarding potential information conflicts, it should also be noted that the information will be read at 
multiple places, but there will not be multiple competing locations from which the same fact is updated. 
It can be seen that metrics are originated from a single source, and runtime topology characteristics, 
or changes derived from agent actions (e.g., moving one component).  
 
Nonetheless, information must be propagated in a timely manner from the original source to the nodes 
requiring it to take their own decision. For these pieces of information, the knowledge base will be 
consistent data despite being distributed across different clusters. The choice of consistency model 
(strong, eventual, or causal) will impact the architecture. Moreover, tools or mechanisms for data 
replication and synchronization within the decentralized storage system must be chosen to maintain 
this consistency while allowing for the necessary trade-offs between consistency, availability, and 
partition tolerance (CAP theorem). 
 

5.2.4 Scalability and performance  
 
The knowledge base will have a data volume that grows in particular with respect to the runtime metrics 
extracted from the multiple clusters. The storage component will be able to scale horizontally to 
accommodate these needs. In order to achieve so, storage solutions and database technologies used 
must be capable of scaling out across clusters without significant degradation in performance.  
 

5.2.5 Availability and fault tolerance 
 
The knowledge base needs to be highly available, with built-in redundancy to handle node or cluster 
failures. This involves implementing replication strategies across clusters, designing for failover, and 
having robust health-check and self-healing mechanisms in place. The swarm intelligence layer may 
adaptively manage these aspects, rerouting traffic and workload when necessary to maintain service 
continuity. 
 

5.2.6 Data security and governance 
 
Data privacy, security, and compliance with regulatory requirements are critical for managing sensitive 
knowledge bases. This encompasses encryption for data in transit and at rest, RBAC for access control, 
etc. Governance mechanisms must be established to enforce these policies across the multi-cluster 
environment. 
 
 

5.3 Relationship with other ACES elements 
 
The data storage will interact with multiple other components to perform its required functions. In this 
subsection, we detail what these interactions are, and their purpose. 
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Runtime data is produced within the monitoring and telemetry components. Therefore, the data initially 
captured at the observability and monitoring infrastructure will be eventually processed and stored by 
the data management component. These values will be cross-checked against the overall graph model 
to verify they belong to a known entity of the knowledge base and will be stored in the time series 
storage component, where they will be made available for further postprocessing to derive from them 
usable features for the reasoning components. 
 
The main consumer of ACES data will be the orchestration component. The different agent and 
reasoning models need to utilize knowledge both for training their internal models and for performing 
the required diagnosis and decision-making. It is important to establish that every reasoning agent will 
need a different set of features (derived from specific elements of the knowledge base). This means 
that there is an interdependency in multi-EMDC ACES scenarios between the location of the different 
reasoning agents, including the swarm agent components, and the data-providing storage 
components. This relationship further restricts the strategy for partitioning and replicating the data, as 
the locations where that information will be consumed must be taken into account for the internal 
management of each knowledge element.  
 

5.4 Candidate tools 
 
As we have mentioned, the data management component must support two types of data: knowledge 
graphs for the base concepts plus time series measurements from the observability component. While 
in principle it would be feasible to opt for a single platform that stores both types of information, they 
have very different characteristics and requirements, meriting that instead a heterogeneous solution 
with two systems is selected.  
 
For graph storage we consider platforms that support the property graph paradigm, as it provides a 
powerful abstraction that can represent knowledge graphs. It offers a robust data model supporting 
nodes and relationships, each with its associated properties, aligning well with the requirements of 
complex data relationships in modern applications. The supply and demand ACES knowledge models 
are defined using the NGSI-LD, with JSON-LD serialization, as is discussed in D3.1. This representation 
is fully compatible with the expressivity provided by property graphs. Moreover, property graph storage 
systems can take advantage of the highly expressive OpenCypher query language to retrieve 
information. 
 
For the graph storage component there are two main alternative frameworks: Memgraph and Neo4J. 
Both systems provide a community edition that is open source, expanded by a commercially licensed 
distribution.  Another alternative is to use a general purpose NoSQL store such as MongoDB, but that 
option would lack the native graph advantages of these alternatives such as the availability of a tailored 
query language. Memgraph is a high-performance, in-memory graph database tailored for handling 
large-scale graph data with an emphasis on property graphs. Optimized for high-throughput and low-
latency operations, Memgraph is particularly suited for real-time analytics. Regarding its scalability, 
Memgraph supports replication across multiple replicas, although it lacks sharding capabilities where 
the graph is partitioned among multiple nodes. Memgraph also integrates with streaming platforms like 
Kafka to support scenarios requiring more timely updates. In comparison, Neo4j is the most established 
graph management system, predating Memgraph for over a decade. It employs Cypher as its primary 
query language, similar to Memgraph but with distinct functions and optimizations. While Neo4j is 
generally efficient, performance benchmarks show a substantial advantage on this front in favour of 
Memgraph. However, Neo4j's strong community support and a wide range of plugins and integrations 
are significant assets. Both options present limitations with respect to the requirements of a fully 
decentralized distributed solution for storing the whole supply and demand model, but they are suitable 
taking into account. The decision to partition the model will be defined in coherence with the required 
information and location for the different reasoning agents. 
  
For the time series database component, InfluxDB is an ideal candidate for the storage. This database 
is specialized on handling time-stamped data, which includes the metrics and events recorded in the 
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ACES runtime model. Its core strengths lie in high write and query throughput, essential for real-time 
analytics on time series data. InfluxDB's efficient data compression algorithms and retention policies 
ensure high scalability for managing the potentially large amount of data generated by the observability 
and monitoring component. Additionally, its native support for time-centric functions and queries will 
ease the access of that information for both the data processing functions developed in WP3, as well 
as the reasoning components that need to utilize these features.  
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6 Orchestration  
The management of the edge infrastructure, the so-called edge continuum, presents a dynamic 
computing landscape. Within the edge continuum, intelligence is spread across the edges forming a 
distributed environment. This will make the edge more autonomous and fine-grained in local decision 
making within a regional context and make it more independent from a central coordination point. 
Resource allocation, workload scheduling, and data management are challenges that increase the 
complexity of the edge orchestration and edge-cloud interaction. Despite the growing interest in edge 
computing, there remains a notable research gap in developing comprehensive solutions that efficiently 
manage edge interactions [21]. 
 
This section introduces a novel component, the so-called swarm intelligence component that combines 
agent-based modelling and swarm intelligence as an emergent orchestrating mechanism to address 
these complexities. Agent-based modelling and swarm intelligence are known for providing advantages 
in simulating complex systems with autonomous entities including adaptability, scalability and 
robustness. They utilize collective decision-making processes as observed in nature by swarms of 
insects, fish or birds [22]. This framework is at the core of the architecture, required to manage a 
powerful edge infrastructure, a mesh of Edge Micro Data Centers (EMDCs) capable of processing big 
data and AI at the edge-to-edge environment independent from a distant cloud. The EMDCs operate 
autonomously in serving local demand for edge-cloud services and creating regional collaborative 
federations to provide edge services. The advantages of creating an autonomous powerful edge are 
to minimize data traffic between edge to a centralized cloud, reduce costly data extraction for 
centralized clouds, enhance edge-to-edge data traffic, reduce round trip latency of inference, improve 
resilience and reduce the fall-out from security breaches [21]. 
 
Central to our approach is the integration of autopoietic characteristics that include the emergent 
intelligence of self-organization, regeneration, and regulation. These characteristics enable the system 
to dynamically adapt and optimize in response to changing conditions. AI-driven optimization methods 
(including swarm intelligence) in cloud infrastructure are successfully being researched (see 
Deliverable D4.2 for more details). Among recent notable examples of utilization of swarm intelligence 
to optimize complex systems, is the work of Schranz et al. [23], where authors successfully utilize 
bottom-up job shop scheduling applying swarm intelligence algorithms for optimizing a large 
production plant. Thus, we propose the edge continuum with its characteristics and limitations as a 
novel field of application for swarm intelligence [21].  
 
In the edge-continuum, we work on two levels applying self-organization using swarm intelligence: 

1. Multi-cluster orchestration comprises the distribution of the demand on multiple clusters in one 
EMDC. 

2. Inter-cluster orchestration comprises the emergent workload scheduling of one cluster in one 
EMDC 

 
This numeration also reflects the efforts put first in level 1. and then as an extension in level 2. 

 
6.1 Background 
 
The main idea of swarm intelligent behaviour is that it should be able to produce a complex and scalable 
way of acting in a group, starting from simple and local rules/computations. In nature, the behaviour of 
social animals appears to be adaptive, robust, and scalable [21]. These are desirable properties of a 
system that swarm intelligence design precisely aims to replicate in technical systems. 
 
Adaptability represents the ability of a swarm to adapt to dynamic changing environments and to cope 
with different tasks. By exploiting robustness, a swarm can cope with disturbances and failures, such 
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as the loss or the malfunctioning of individual agents. Scalability gives a swarm the ability to perform 
well with different numbers of swarm members and with differently sized problems. Adding or removing 
swarm members does not lead to a significant decline in performance, as long as their number does 
not fall below a critical mass (explained below). A collection of individuals can be considered a swarm 
if it exhibits a verifiable swarm behaviour, including all characteristics mentioned above. 
 
Two crucial aspects should be noted [21]: Critical mass (briefly mentioned above) and super-linear 
scaling of the system performance. These system features, which can be seen as mandatory for a true 
swarm system, have been discussed in current literature only marginally. 
 
Critical mass: The advantages of SI (Swarm Intelligence) algorithms can only be exploited if a critical 
mass of swarm members is reached. In natural swarm systems, such as honeybees' or cockroaches' 
collective aggregation decisions [23, 24] as well as in autonomous robotic swarms [43], it was found 
that the number or density of agents plays an important role in the swarm performance and that swarm 
systems below a critical number of agents do not function well as a collective. 
 
Such a critical mass threshold can be illustrated by the example of the formation process of a sand 
dune: given three grains of sand, together they do not form a sand dune, although they must obey the 
same physical laws as the billions of sand grains that form a massive dune. This is because the order-
generating feedback loops do not impart any effect strongly enough to overcome the system's noise 
that drives it towards the disorder. In general, SI applications do not work well below a critical mass, 
but increasingly well above this threshold up to a size where other effects reduce swarm performance 
again. It should be noted that it is not yet clear what this critical threshold (the minimum number of 
swarm members) should be [22]. 
 
Super-linear performance scaling: When scaling up beyond the critical mass, it is expected that in any 
collective system, a large group of agents will achieve more work in total than a smaller group at the 
same time. In a true swarm, the interactions between the swarm members should exhibit super-linear 
characteristics, i.e., the effect of the overall system is required to be more than the sum of the effects 
of its individual parts. Examples are described for honeybees [23], for robotic swarms [25, 26], and for 
multi-processor systems [27]. The overall system is a well-designed swarm application only if the 
synergies of cooperation boost each individual swarm member's performance and the local control 
algorithms of the swarm members are well-designed. This means that within the bounds of feasible 
swarm sizes, not only the efficiency of the whole swarm as a group but also the efficiency of each 
single individual must increase. We refer to this as the swarm effect [21]. 
 
Figure 9 illustrates the expected performance scaling properties of three different systems with C1 – 
C4 as fictive threshold numbers for agents in a swarm:  

a.  The performance of a hypothetical perfectly scaling disembodied algorithm or a swarm model 
that does not care for physical constraints at all, which will scale linear with O(n) as the dashed 
line, where n is the number of swarm members.  

b. The performance scaling of an algorithm that shares resources with other algorithm instances 
or a swarm model that considers space as a shared resource for agents, which will scale O(log 
n) as the dotted line. 

c. The performance of a physically embodied swarm system operating in the real world as the 
solid hat-shaped curve [21]. 
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                                        Figure 6.1: Swarm scaling performance 

 
 

6.2 Multi-Cluster orchestration  
 
In the multi-cluster environment, we consider multiple clusters, thus multiple swarms. On this level the 
swarm agents represent the demand and the clusters. As in the inter-cluster orchestration, the demand 
swarm agents represent workload behaviours at the microservice level. The cluster swarm agents, on 
the other hand, represent the individual clusters of an EMDC that is characterized with the resources 
available in each cluster. By the implementation of swarm algorithms, these agents collaborate within 
an Edge Micro Data Center (EMDC) environment, orchestrating processes such as workload placement, 
storage management, and caching optimization.  
 

 
Figure 6.2: Multi-cluster orchestration swarm agents 
 

6.3 Inter-Cluster orchestration 
 
 For the inter-cluster orchestration, the key to our approach is the use of swarm agents, representing 
demand and supply entities. Demand swarm agents represent workload behaviours at the microservice 
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level (or pod level if we directly refer to Kubernetes), ensuring workload scheduling optimization. On 
the other hand, supply swarm agents represent node dynamics. These agents collaborate within an 
EMDC cluster, orchestrating processes such as workload placement, storage management, and 
caching optimization (see Deliverable D3.1 for more details on agent-based modelling). Exemplary 
swarm algorithms, the hormone and ant algorithms (details in Deliverable D4.2) are utilized to 
accomplish the desired functionality of the system. For example, demand swarm agents deploy 
synthetic hormones to communicate their requirements and priorities. Supply swarm agents detect 
these hormones to make informed allocation decisions. The ant algorithm dynamically optimizes 
workload-node assignments by simulating the foraging behaviour of ants, depositing pheromones to 
guide subsequent decisions [28]. The agent types are shown in Figure 6.3. 
 

 
Figure 6.3: Inter-cluster orchestration swarm agents 

 

6.4 Innovations through swarm intelligence  
 
An innovation that the ACES project will introduce is the use of AI/ML to achieve autopoietic behaviour 
in individual agents, on multiple layers. Specifically, regarding swarm agents, ACES will make the 
coalition's behaviour adapt autonomously to changes in the operating environment. To do this, AI/ML 
algorithms will be used to enable the swarming algorithms to calibrate and update their 
hyperparameters autonomously. 
 
Hyperparameters in swarming algorithms control the overall behaviour of the coalition (i.e., intensity of 
hormone attraction, quantity of generated hormones, mobility of hormones, etc.) and are usually 
chosen through random/grid searches, heuristics, or trial and error. In ACES, on the other hand, we will 
implement AI/ML tools (such as Bayesian learning or Reinforcement Learning) that, by monitoring the 
performance of KPIs, will be able to select the best value for the hyperparameters. 
 
Furthermore, once an initial configuration of hyperparameters is found, the proposed algorithms will be 
capable of quickly adapting to real-time changes in the context, using the previous configuration as a 
starting point for recalibration. 
 
More details on this are given in D3.1 and D4.2. Future deliverables D3.3. and D4.3 will explain the 
procedure in depth. 
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7 Networking 
This Chapter aims to present a general overview of the ACES network architecture. The ACES network 
will be intelligent through an advanced closed-loop Software-defined Networking (SDN)-based 
network control infrastructure that couples monitoring with machine learning-based analytics. It will 
provide a range of new functionalities targeting edge-based infrastructures, including in-network 
authentication and intrusion detection for security, network acceleration for performance, and 
advanced forms of in-network computation to assist the swarm-based ACES intelligence. 
 

7.1 Design requirements 
 
From the networking point of view, the design of ACES is driven by eight main requirements. 
 
Service connectivity: A critical aspect of the ACES edge-computing platform is the establishment of 
robust service connectivity. This goal involves configuring seamless communication between service 
instances while prioritizing Quality of Service (QoS) requirements, namely, ensuring low latency and 
high throughput to meet the platform's objective of enhancing intelligence at the edge. 
  
Network observability: ACES requires high operational visibility to gain deep insights into the 
performance and behaviour of the underlying infrastructure. This visibility not only aids in proactive 
issue detection but can also enable efficient resource allocation, contributing to the overall stability 
and reliability of the edge-computing system. ACES network approach to this problem entails 
incorporating in-network telemetry mechanisms. 
  
High throughputs and low latencies: Meeting the demands of edge computing requires high network 
throughputs and low latencies. This optimization ensures that data traverses the network swiftly and 
efficiently, enabling the platform to deliver timely and responsive intelligence to edge systems. ACES 
achieves this by incorporating in-network acceleration mechanisms. 
  
Closed-loop network control: ACES network control should enhance the platform's agility and 
responsiveness to varying workloads and network conditions. Towards this goal, ACES will integrate 
network monitoring with machine learning-based analytics to form a closed-loop control. This synergy 
empowers the platform to dynamically adapt to changing conditions, automatically adjusting 
configurations and resource allocations based on real-time insights. 
  
Scalability: The scalability of the ACES network platform requires a distributed control architecture. 
This design allows the platform to seamlessly expand its capabilities to accommodate a growing 
number of edge devices and service instances. By distributing control functions across the network, 
ACES ensures scalability without compromising performance, supporting the evolving needs of edge 
computing deployments. 
  
No single point of failure: Redundancy is a fundamental consideration for ACES to guarantee 
uninterrupted service. The platform adopts a design philosophy with replicated control, eliminating any 
single point of failure. This redundancy ensures continuous operation even in the face of hardware or 
network component failures, enhancing the reliability and resilience of the edge-computing 
infrastructure. 
  
Network security: Security is paramount in the design of the ACES platform. Our aim is to incorporate 
comprehensive security features into the networking sub-system to ensure that ACES is secure by 
design. We will implement robust network security measures employing AI mechanisms to safeguard 
against potential cyber threats. We leave details on this specific requirement to Chapter 10. 
 
Multi-Cluster Networking: The multi-cluster networking solution must seamlessly integrate 
Kubernetes clusters and programmable network switches while supporting dynamic scaling and pod 
mobility. This will be brought through technologies such as Submarriner or Istio service mesh. 
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7.2 Network architecture overview 
 
The network architecture of the ACES edge-based platform reflects a design that includes SDN 
principles, control-loop enhancements, and programmable data plane devices. This holistic approach 
aims to provide a foundation for adaptive, intelligent, and efficient edge networks. 
  
The ACES network architecture embraces the SDN paradigm, a departure from traditional networks 
that rely on dedicated hardware devices like routers and switches for network traffic control. In ACES, 
the forwarding state in the data plane is managed by a remote control plane, introducing a decoupling 
between the two planes that enhances adaptability and agility. The SDN approach within ACES further 
incorporates a control-loop mechanism, seamlessly integrating network telemetry and machine 
learning-based analytics. This integration allows ACES to respond dynamically to changing network 
conditions and harness insights derived from analytics for informed decision-making, creating a 
symbiotic relationship between network control and intelligent data analysis. 
 
Our SDN-based design enables the dynamic orchestration of ACES multi-cluster networking. We 
resort to overlays to allow for dynamic scaling and mobility of pods across clusters. To enable seamless 
interfacing of the Kubernetes multi-cluster with our network switch infrastructure, we plan to explore 
existing and develop new Container Network Interface (CNI) plugins. Furthermore, our design will 
include isolation and segmentation mechanisms between clusters for security and operational 
flexibility. Finally, we integrate network switch monitoring into Kubernetes monitoring tools, ensuring 
comprehensive visibility and control over both the Kubernetes and network switch environments. 
   
ACES takes a multifaceted approach to intelligence within its network by leveraging programmable 
data plane devices, including programmable switches and SmartNICs/DPUs. This strategic integration 
goes beyond conventional network architectures, enabling ACES to achieve enhanced intelligence 
through in-network telemetry, accelerated network functions, integrated in-network security, and 
support for swarm-based orchestration mechanisms. Programmable switches and SmartNICs/DPUs 
allow the platform to adapt and evolve, allowing for dynamic adjustments in response to varying 
workloads and operational requirements. This level of programmability not only enhances the overall 
intelligence of the ACES network but also ensures a scalable and efficient edge infrastructure capable 
of meeting the diverse demands of modern edge computing applications. 
 

7.3 Control plane 
 
In contrast to traditional networking models where control functions are distributed across individual 
devices, ACES opts for a logically centralized control model following an SDN approach. This choice 
allows for unified and programmable control over the network, facilitating efficient resource allocation, 
dynamic configuration changes, and seamless adaptability to the evolving demands of edge computing 
environments. The SDN-based logical centralization enables the intelligence ingrained in the ACES 
network control architecture. 
  
ACES prioritizes fault tolerance and scalability in its network control plane architecture. For fault 
tolerance, ACES replicates the control plane. In a replicated control plane, multiple instances of the 
SDN controller are deployed across different nodes, working in tandem to manage network operations. 
If one instance fails (due to hardware issues or other unforeseen circumstances), the remaining replicas 
continue to operate seamlessly. This redundancy minimizes the risk of a single point of failure, ensuring 
the reliability and continuous operation of the network control even in the face of unexpected events. 
  
For scalability, ACES distributes the control plane. As the ACES edge infrastructure grows with 
additional EMDCs, the controller can efficiently manage the increased load by distributing control 
functions across multiple instances. This balancing of efforts ensures that the network control remains 
responsive and can effectively handle the evolving demands of a dynamically expanding edge 
environment. 
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The ACES network control plane features a sophisticated closed-loop mechanism, integrating SDN 
principles with Machine Learning (ML) analytics. This fusion creates a dynamic and intelligent control 
system capable of autonomously adapting to changing network conditions. The closed-loop 
mechanism continuously monitors the network, gathering performance and traffic pattern data. This 
data is fed into an ML analytics platform, enhancing the system's ability to predict, analyse, and 
optimize network behaviour.  
  
In summary, the network control plane of the ACES edge-based platform is characterized by its SDN-
based logical centralization, replicated control for fault tolerance, distributed control for scalability, and 
a closed-loop mechanism augmented with ML-based analytics. This approach establishes the 
foundation for a resilient, scalable, and intelligent network control system tailored to the dynamic nature 
of edge computing environments. 
 
 

7.3 Data plane 
 
The network data plane of the ACES edge-based platform integrates high-performance 
programmable data plane devices, such as programmable switches, Data Processing Units (DPUs), 
and/or Intelligence Processing Units (IPUs). This integration aims to enhance multiple facets of the 
edge environment. For instance, leveraging programmable switches' capabilities fortifies security by 
expediting intrusion detection processes. Network performance may benefit from the direct execution 
of AI/ML algorithms and cryptographic operations in the data plane, reducing latency and improving 
overall efficiency. Furthermore, offloading specific application and system functionality onto 
programmable devices can elevate ACES infrastructure control (e.g., by running swarm mechanisms 
on network devices) and boost service performance. 
  
ACES includes fine-grained network telemetry as a cornerstone of its data plane architecture. 
Examples include the implementation of in-network sketches and per-packet statistics computations, 
providing comprehensive insights into network behaviour and performance. In addition to traditional 
telemetry methods, ACES leverages in-band network telemetry data to refine the monitoring 
capabilities further, by gathering telemetry metadata for packets traversing the network (e.g., explicit 
information on packet routing paths, latency experienced by packets, and in-network congestion 
information). This level of granularity enables real-time monitoring and analysis of network traffic, 
facilitating the identification of potential bottlenecks, congestion points, and security threats. These 
advanced telemetry mechanisms help support data-driven decision-making and proactive 
management of network resources. 
  
The ACES data plane enables the acceleration of critical network functions, including load balancers, 
Network Address Translators (NATs), proxies, firewalls, and more. ACES explores innovative program 
synthesis techniques to address the inherent software engineering challenges of supporting its diverse 
data plane platforms. Different techniques will be explored, based on formal methods like symbolic 
execution or AI/ML approaches, to enable the automatic generation of optimized code for specific 
target platforms. This approach enhances the efficiency and flexibility of the ACES data plane, ensuring 
that it can seamlessly adapt to the diverse requirements of edge computing workloads. 
  
In summary, the network data plane of the ACES edge-based platform leverages recent programmable 
network hardware to deliver high performance, security, and service efficiency. Integrating fine-
grained network telemetry and function acceleration directly in data plane devices collectively forms 
the foundation for a robust, performant, intelligent network architecture. 
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8 Monitoring and observability  

When considering complex distributed architectures—spanning multiple cluster or edge 
environments—the ability to gain deep insights into the performance, health, and interactions of these 
clusters, nodes, and constituent workloads becomes paramount. Observability represents an approach 
to analysing and optimizing systems by providing a real-time perspective on all operational data related 
to applications and infrastructure. Observability lays the groundwork for the ACES platform to 
proactively identify and address issues to ensure seamless operations and optimal resource utilization. 
However, the complexities of multi-cluster or edge environments, such as the ones in ACES, change 
the way of comprehensively viewing system behaviour, dependencies, and potential bottlenecks and 
subsequently detecting, diagnosing, and resolving fatal errors. 
  
The monitoring and observability framework is a vertical ACES component, spanning the overall ACES 
architecture and its constituent components. The component provides monitoring and observability 
aspects to the different layers of the software stack on various levels (i.e., edge, application, network, 
and cloud layer). It encompasses monitoring, logging, tracing, metrics collection, alerting, anomaly 
detection and analysis, visualization, and performance analysis. Due to its inherent distributed nature, 
the monitoring and observability framework considers hierarchical and distributed monitoring and 
storage, including across multiple clusters. 
  
In this section, the monitoring and observability state-of-the-art is described, which serves as a 
foundation for the proposed monitoring and observability requirements and architecture. Next, the 
requirements with the resulting architecture are detailed and related to other ACES components in light 
of federated/distributed multi-cluster monitoring. Moreover, the monitoring and telemetry data, as well 
as their acquisition aspects, are discussed. Finally, considerations on asset runtime, fine-grained 
network, periodic and event-driven observability and monitoring are presented. 
 
 

8.1 Monitoring and observability in modern systems  
 
The notion of observability states that a system is observable when the root cause of issues or events 
can be straightforwardly detected without additional investigation. That is, the system’s observability 
is delineated by the capacity to understand its complex internal state based on sufficient measurable 
external outputs. On the other hand, monitoring aims to assess the system’s state via the collection, 
measuring, and analysis of the system’s outputs. As monitoring generally considers only a predefined 
set of measurements, its scope is limited to detecting only a specific set of eventualities. This implies 
that with the complexity of modern systems, observability permits the so-called white-box monitoring 
[31], i.e., monitoring where the system internals are known and comprehensively report their current 
state is required, as opposed to traditional black-box monitoring, which primarily observes the system’s 
state from outside. 
  
With the upswing of cloud and edge computing, modular distributed systems composed of flexible 
containerized services are becoming ubiquitous. Such workloads may be extended with a behaviour 
logic description that characterizes its internal behaviour and improves observability [32]. Moreover, 
as distributed workloads and systems generally have a complex execution path—with requests 
crossing multiple services or compute nodes—, a need for capturing resulting traces emerges. In [33], 
a generic methodology for capturing such requests is proposed. Another crucial aspect of observability 
is identifying the performance of distributed systems. To this end, a mixture of benchmarking and 
simulation approaches have been applied [34]. Finally, to provide actionable information to the 
operator, detecting and explaining system deviations is required. Several approaches to automated 
detection of anomalies have been proposed, such as in [35], as well as root cause analysis, as in [36]. 
  
Whereas the area of monitoring and observability has been thoroughly explored and with many 
industrial production systems already in place, a number of challenges remain. In [37], a qualitative 
analysis observed the following contemporary challenges in distributed system monitoring: 
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● Increasing dynamics and complexity of distributed systems, especially due to the emerging 
trends of microservice architectures and cloud computing, which are not manually manageable. 

● Heterogeneity of distributed systems, which often constitute of legacy components and 
consider multitenancy. 

● Problems in culture and mindset, which may result in monitoring pitfalls, such as isolated 
monitoring and lack of collaboration/communication. 

● Distribution of monitoring aspects without employing a centralized system-wide point of view, 
lowering the transparency of impacts. 

● Extensive amounts of data, which may impact the prioritization and ability to draw conclusions 
due to the complexities arising from overwhelming information. 

● Expert dependency and lack of experience, time and resources, which may hinder the timely 
and comprehensive diagnosis of issues and imply reactive as opposed to proactive monitoring 
and observability. 

● Insufficiently defined non-functional requirements, such as availability and performance, 
resulting in inadequately measured and monitored context. 

● Applying reactive instead of proactive implementation, often triggered by a failure in production 
systems, resulting in ad hoc solutions as opposed to systematic solutions. 

  
The major features of a monitoring and observability system should thus cover the aspects of data 
requirements and related measurements, basic functionalities and key characteristics [8] as outlined 
in the following. The three main data types (logs, metrics, traces) provide the operators with the so-
called golden signals of observability, which serve as a basis for alerting, troubleshooting and 
tuning/capacity planning. Generally, the following telemetry measurement types are considered: 
latency, traffic, errors, and saturation. Building upon the measurements, the observability system 
should provide three key functionalities: correlation, i.e., linking events to other related events, 
topology, i.e., providing a graph of dependencies, and incident response, i.e., automated handling of 
remediation. The key characteristics of observability systems are connected context, easier and faster 
exploration, a single source of truth, capturing arbitrary wide events, and decoupling data sources from 
sinks [38]. Moreover, [37] denotes the following requirements in employing observability in distributed 
systems: a holistic approach, management from a business and user experience view, the definition of 
core metrics from a customer-centric view, governance, use of a unified monitoring platform, detection 
of normal and abnormal patterns, among others. 
  
Observability and monitoring in practice have been enabled via various solution implementations, 
covering aspects from monitoring data collection to visualization. In Table 8.1, we provide an overview 
and comparison of state-of-the-art open-source solutions. The solutions generally target specific 
monitoring scenarios, such as networks or applications. Most solutions provide some form of 
visualization capacities and additionally enable integration with standard telemetry/monitoring 
ecosystems. Moreover, big data and scalability support is generally provided out-of-the-box. Finally, 
some solutions provide advanced analysis, anomaly detection and alerting functionalities. 
 

Table 8.1: Overview of monitoring and observability solutions 
 

SOLUTION SCOPE MAIN FEATURES 

Apache 
SkyWalking1 

Application 
performance 
monitoring 

− End-to-end distributed tracing, service 
topology analysis 

− Log management pipeline, metrics aggregation 
− Alerting and telemetry pipelines 
− Integration with telemetry ecosystems 
− Big data scalability 

 
1 https://skywalking.apache.org/ 

https://skywalking.apache.org/
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Consul2 Application 
network 

observability 

− Service discovery mechanism 
− Metrics collection and topology visualization 
− Integration with telemetry ecosystems 

Kibana3 Observability 
data analytics 

− Data ingestion and enriching 
− Search and analysis of data and visualization 
− Full and multi-stack monitoring 
− Automated alerting 
− High scalability and resiliency 

Cilium4 Network 
observability 

− Service map visualization 
− Network flow logs 
− Metrics and tracing collection/export 
− Advanced network protocol visibility 

Prometheus5 Monitoring 
system 

− Big data scalability 
− Standardized query language 
− Alerting and visualization 

Integration with telemetry ecosystems 

OpenTelemetry6 Telemetry 
collection 

− Collection and export of traces, metrics, logs 
− Support for system instrumentation 
− Standardised 

Monasca7 Monitoring 
system 

− High scalability and performance 
− Multitenancy support 
− Integration with OpenStack 
− Metrics processing and querying 

Streaming alarm and notification engine 

Sysdig8 System/container 
observability 

− Native inspection of physical/virtual machines 
and containers at OS-level, considering storage, 
processing, network, and memory subsystems 

− Trace collection, filtering 
− Unified and customizable user interface 

Grafana9 Observability 
platform 

− Visualization and querying of data 
− Anomaly detection and alerting 
− Integration with telemetry ecosystems 
− High scalability and performance 

Jaeger10 Distributed 
tracing platform 

− Distributed workflow monitoring 
− Analysis of service dependencies and 

visualization 
− Integration with telemetry ecosystems 
− High scalability and performance 

 
2 https://www.consul.io/  
3 https://www.elastic.co/kibana  
4 https://cilium.io/  
5 https://prometheus.io/  
6 https://opentelemetry.io/  
7 https://wiki.openstack.org/wiki/Monasca  
8 https://sysdig.com/  
9 https://grafana.com/  
10 https://www.jaegertracing.io/  

https://www.consul.io/
https://www.elastic.co/kibana
https://cilium.io/
https://prometheus.io/
https://opentelemetry.io/
https://wiki.openstack.org/wiki/Monasca
https://sysdig.com/
https://grafana.com/
https://www.jaegertracing.io/
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Fragmenting of solutions and lack of interoperability present a burden in modern observability and 
monitoring. In addition to vendor lock-in when applying proprietary solutions, a considerable risk is 
represented by the compatibility of different monitoring and observability solutions, which hinders the 
ability of composing comprehensive and connected systems. To this end, various initiatives have 
emerged aiming to define interoperable and standardized specifications and implementations. Notably, 
to ensure portability and interoperability in telemetry, a set of telemetry standards and specifications 
have been defined in the OpenTelemetry specification [39] that provides a set of rules, guidelines, and 
requirements that the resulting implementations should follow. The specifications define API, SDK, as 
well as data model specifications. Moreover, an Observability Query Language Standard (QLS) [40] 
workgroup in the Cloud Native Computing Foundation (CNCF) has been recently established to define 
a standardized query language for observability data. Additionally, standardization activities took place 
to establish a standardized Prometheus remote-write protocol [41] for transmitting metrics data. To 
tackle establishing a common data model for propagating context information enabling distributed 
tracking scenarios, a W3C recommendation on trace context was defined [42]. 
 

8.2 Requirements  
 
The design requirements for the monitoring and observability component outline the desired 
specifications and functionalities of the related components. This information is crucial for the definition 
of the architecture and provides guidance throughout the subsequent system development stages. 
The requirements were gathered by reviewing state-of-the-art technological and non-technological 
aspects outlined in Section 8.1, as well as considering the ACES requirements, architecture, and use 
cases defined in this document. Table 1 presents a compilation of these requirements, including both 
functional and non-functional aspects. Furthermore, these requirements are linked to the architectural 
elements described in the next section. 
 

Table 8.2: Monitoring and observability module requirements 
 

NAME GROUP DESCRIPTION RELATED 
SUBMODULE 

Metrics, traces, 
and log collection 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Functional 

The solution should enable the 
collection of metrics, traces, and logs 
of ACES components, infrastructure, 

and workloads. 

All 

Data collection 
mechanisms 

The solution supports several data 
collection mechanisms, such as 
pull/push or custom protocols. 

Retrieval Worker, 
Push Gateway, 
Data Forwarder 

Anomaly 
detection and 

alerting 

The solution should implement real-
time log/metric analysis and anomaly 

detection on monitored data and 
related alerting of implicated entities. 

Anomaly 
Detection, Alert 

Manager 

External anomaly 
detection 

The solution should support 
integration with external anomaly 
detection and alerting solutions. 

Anomaly 
Detection, Alert 

Manager 

Automated target 
discovery 

The solution should support 
automated configuration and the 
addition of monitored targets. 

Service 
Discovery 

Mechanism 
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Data retrieval and 
aggregation 

The solution should implement 
interfaces for monitoring data retrieval 
and aggregation. 

Server, Data 
Forwarder 

Data analysis and 
visualization 

The solution should support data 
analysis and visualization. 

Data Analysis, 
Export and 

Visualization 

External 
distributed 

storage 

The solution should enable the 
integration of external distributed 
storage systems. 

Internal 
Database, 
Storage 

Monitoring 
federation 

The solution should enable federation 
among distributed monitoring 
instances. 

Data Forwarder, 
Storage 

Standardized 
query languages 

The solution should support data 
retrieval, aggregation, and analysis via 
standardized query languages. 

Server 

Large data  
 
 
 
 
 
 
 
 
 
 
 
 

Non-
functional 

The solution should support large data 
processing. 

All 

Open standards The data models, formats, and APIs 
should be based on established open 
standards. 

All 

Real-time 
processing 

The solution should enable low-
latency real-time processing and 
analysis. 

All 

Modularity and 
extensibility 

The solution should be modular and 
extensible. 

All 

Interoperability The solution should be interoperable 
with modern as well as legacy 
monitored targets and systems. 

Push Gateway, 
Data Forwarder 

Scalability The solution should be horizontally 
and vertically scalable. 

All 

Constrained 
environments 

The solution should support 
constrained edge environments. 

All 

 

8.3 Monitoring and observability architecture  
 
To effectively analyse and develop complex systems, a structured system architecture is necessary. 
This architecture outlines the modules and their interactions, helping with experimentation, validation, 
and reasoning about the system. In Fig. 8.1, we present the ACES monitoring and observability 
architecture, which is built upon the analysis of state-of-the-art platforms and standards as well as 
system requirements provided in Sections 8.1 and 8.2, respectively. The proposed generic architecture 
may be applied to implement custom and specialized metric pipeline architectures, such as the one 
defined in D3.1 - ACES Data and Knowledge Model. 
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The ACES Monitoring and observability architecture targets decentralized system observability, 
observability data management, and alerting. The architecture consists of the main subcomponents 
Monitoring and Observability Core, Push Gateway, Alert Manager, and Data Forwarder, which provide 
core functionalities of monitoring and telemetry data collection, storage, forwarding, querying, and 
alerting to ACES workloads or other ACES components. Additionally, auxiliary subcomponents enable 
functionalities such as service discovery or data analysis, data export, and visualization. In the 
following, we provide additional details on the subcomponents. 

 

 
Figure 8.1: Monitoring and observability architecture 

 
 

Monitoring and Observability Core represents the primary subcomponent of the architecture, as it is 
the part of the system that conducts the actual monitoring. It consists of the following components:  

● Storage: A local time series database optimized to store vast volumes of timestamped data. 
This database is used to store all collected monitoring and telemetry data. 

● Retrieval Worker: A component that periodically pulls metric and telemetry data from workloads, 
Push Gateway or other components and saves them to storage. 

● Server: An API server that accepts queries and retrieves the requested data from the Internal 
Database. This component is the primary interface for data analysis, export, or visualization 
workflows. 

 
Push Gateway	allows the Monitoring & Observability Core to receive monitoring and telemetry data via 
an alternative push mechanism. The workloads may push their data to the gateway, which is then 
periodically queried via the Retrieval Worker. This mechanism is especially relevant for short-lived 
workloads. 
  
Data Forwarder enables pulling or pushing monitoring/telemetry data from and to other ACES 
components or tools via custom pluggable protocol and format extensions. For instance, the Data 
Forwarder subcomponent may be applied to implement additional metric scraper or streaming modules. 
Moreover, the Data Forwarder subcomponent may be applied to establish federation among the 
distributed monitoring instances. Additional data aggregation steps may be applied while forwarding 
data. 
  
Anomaly Detection submodule implements real-time log and metric analysis to enable early detection 
of system issues and transgressions. In case of an anomaly, the concerned entities are notified. The 
submodule may be extended with external cognitive components. 
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The Alert Manager component handles the alerts sent by the Anomaly Detection subcomponent or 
other applications. It enables automatic alert routing and forwarding, as well as more complex 
operations, such as alert deduplication, grouping-related alerts, or rule-based alert suppression. 
  
Service Discovery Mechanism is a mechanism that allows the Monitoring & Observability Core to 
discover and monitor targets automatically, i.e., with no manual configuration. This proves especially 
useful when working in environments where the number of running instances may be rapidly changing. 
The Service Discovery Mechanism may support one or more discovery methods, such as static 
discovery files, DNS-based discovery or other orchestration-specific discovery. 
	 
Data Analysis, Export and Visualization implements advanced data analysis and retrieval methods via 
graphical user interface dashboarding toolboxes or data browsing and analysis solutions. The data are 
retrieved from either the Internal Database or Server component using a standardized query language. 
  
ACES Asset represents any monitorable ACES workload, ACES cluster, ACES component or ACES 
infrastructure element in the ACES platform. 
  
Communication Channels define external messaging means capable of displaying notifications, e.g., 
dashboards or communication platforms. 
 

8.3.1 Federation and multi-cluster monitoring  
 
There are several approaches to implement monitoring and observability when considering multiple 
clusters within ACES. One option is to apply a single cluster with a monitoring instance to scrape the 
data from other clusters or to scrape the data from remote metrics endpoints. The advantage of this 
approach is simplicity, as there is only one monitoring instance in a central cluster that collects data 
from multiple clusters. Another advantage is the fact that monitoring, alerting, and analysis are 
centralized, thus enabling a unified view of the system. On the other hand, there are several 
disadvantages, including a single point of failure (due to centralization). Additionally, latency in data 
ingression may impact the speed at which metrics are collected, potentially leading to delayed or 
inaccurate monitoring. A somewhat similar approach is based on a push mechanism; the remote 
clusters may remotely write the data directly to the centralized monitoring instance. 
  
Alternatively, a range of monitoring federation principles may be applied. Fundamentally, we distinguish 
two types of federation approaches targeting different goals: query and scrape federation. Such 
systems are more complex as they require a monitoring instance in each monitored cluster. The 
scraping federation considers a monitoring instance in the central observability cluster that periodically 
scrapes the monitoring instances in remote clusters. Whereas this again enables a unified view of the 
system and additionally improves availability due to distributed redundancy, there is considerable data 
duplication. Moreover, additional latency ensues due to the periodic scraping delay on every level of 
the hierarchy. To enable federated querying, an implementation that extends the monitoring instance 
with a query sidecar may be adopted. Using this approach, the data stays in a local cluster while a 
comprehensive view of all clusters, as in the centralized system, is enabled. Nevertheless, if a remote 
cluster is unreachable, consequently, the data are unreachable. Queries can additionally experience 
extensive delays if large amounts of data have to be transferred ad hoc, especially in edge 
environments. 
 

8.3.2 Relationship with other ACES components  
  
The monitoring and observability component spans the overall ACES platform and components and, in 
this, relates to all ACES workloads, ACES components, or ACES infrastructure elements in the ACES 
platform to provide monitoring and observability aspects. Additionally, a specific integration point with 
the Distributed Storage component is identified for data storage functionalities and with the Security 
and Privacy component for authentication, authorization, auditing, and secure storage functionalities. 
Primary consumers of the Monitoring and Observability component are analysis and AI components 
that require knowledge discovery or implement proactive management based on the operational 
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monitoring insights, such as Resource Management, Cognitive Engine, Networking or Orchestration 
components. Integration capabilities are provided via the Data Forwarder subcomponent. 
 

8.4 Monitoring and telemetry data  
  
The ACES project will provide monitoring and observability related to the different levels of the 
software and hardware stack, targeting various layers, such as the edge layer, cloud layer, application 
layer, and network layer. In addition to workload, component, and node observability, an important 
aspect is network observability. High operational visibility is required to gain deep insights into the 
performance and behaviour of the underlying infrastructure, which aids proactive issue detection, 
optimization, and related efficient resource allocation. To comprehensively characterize the 
infrastructure and workload execution context, the following types of monitoring and telemetry data 
(also referred to as signals) will be collected: 

● Traces are an essential concept in understanding how requests and traffic move through the 
infrastructure, components, workloads, and services. They help understand the entire path of 
the process and can be used to identify bottlenecks and errors. 

● Logs are simple timestamped text records that may or may not be structured. Historically, logs 
are the most widespread form of system observability. They are almost always used in legacy 
software and systems due to widespread built-in support. 

● Metrics are runtime measurements of the state of the system. They are used to monitor the 
health of the system and are typically used to trigger alerts. 

  
As the monitoring and observability component stores all data as time series streams of timestamped 
values belonging to the same data type and set of labeled dimensions, every time series is uniquely 
identified by its data name and optional key-value pairs where the key name indicates the parameter 
that is being monitored. Additionally, the data may have supplementary attributes which provide further 
metadata, such as data description. The implementation of the monitoring framework will consider four 
main metric types: 

● Counter: A counter is a cumulative metric that represents a single monotonically increasing 
counter whose value can only increase or be reset to zero on restart. The counter is generally 
used for metrics that measure the number of requests, errors or completed tasks. 

● Gauge: A gauge represents a single numerical value that can either increase or decrease. Gauge 
is used for metrics that measure CPU temperature, memory usage or the number of running 
processes. 

● Histogram: A histogram samples observations and counts them in configurable buckets. It also 
provides a sum of all observed values. Histograms are used for metrics that measure request 
duration or response size. 

● Summary: Summary is similar to histograms with the extension that the summary can calculate 
configurable quantiles over a sliding time window. 

 
The definitive set of anticipated metric data types is provided in D3.1 - ACES Data and Knowledge 
Model and subsequent deliverables. 
 

8.5 Data acquisition methods  
  
Data acquisition in monitoring and observability refers to the processes of monitoring/telemetry data 
ingression and retrieval. In the following, the most common methods and related considerations are 
presented. 
  
Pulling is the primary data collection mechanism, supported by the Retrieval Worker. Its flow is as 
follows: the monitored assets must expose their metrics on a predetermined endpoint, generally named 
“/metrics”; the Retrieval Worker then scraps these endpoints via a request, and the content is stored in 
the Internal Database. One advantage of this approach is the simple addition of additional monitored 
assets due to the light configuration change requirements or even no extra configuration in case a 
discovery mechanism is applied. Additionally, identifying when a monitored asset is unreachable is 
reliable and asset metric data are accessible to other authorized entities that can access the endpoint, 
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while multiple pull-based monitoring tools can use the same endpoint simultaneously. With this 
approach, generally, only one centralized configuration of the Retrieval Worker is required. On the other 
hand, there is a need for a discovery mechanism to identify the assets. This is often accomplished by 
means of the host name. Finally, the endpoints must be accessible to the Retrieval Worker. This can be 
simplified by keeping an instance of the Retrieval Worker in the same cluster as the assets. 
  
In order for the Retrieval Worker to be able to parse and store the scraped data, the endpoints must 
use a standardized format referred to as exposition format. Generally, text-based formats are applied. 
The format’s structure is usually based on lines, meaning each line will be considered a new entry, 
which are sometimes referred to as samples. Lines are separated by a line feed character. Tokens 
within the line must be separated by at least one space. Empty lines as well as trailing, leading and 
redundant whitespaces are ignored. The following values are then extracted: 

1. Metric names and labels: used for identification, querying, additional information, and human 
understanding. Labels are optional, and the combination of a metric name and labels must be 
unique for every line. 

2. Value: a float value representing the numeric value of the metric. NaN, Inf+ and Inf- may be 
provided for not a number, positive and negative infinity, respectively. 

3. Timestamp: an integer representing the time of the event in a standard timestamp format. 
  
The second method of data collection is via a push mechanism. As the Retrieval Worker can only pull 
data, which may not be applicable for short-lived workloads and assets, a Push Gateway component 
is proposed. The assets push their data to the Push Gateway, which serves as temporary cache 
storage. The data are then periodically pulled from the Push Gateway by the Retrieval Worker. 
  
Data retrieval for analysis and visualization is supported by directly querying the Internal Database or 
requesting the data from the internal Server. Querying is generally performed using a standardized 
query language, such as PromQL11, which enables filtering and aggregation by the metric name, labels, 
timestamp of the data, or time ranges. 
  
Data collection and retrieval using custom formats and protocols, such as AMQP, is provided in the 
form of a Data Forwarder component. Data Forwarder is an extensible component that enables 
retrieving or ingressing data via arbitrary protocols in a plugin-like fashion. Additional data aggregation 
steps may be applied while forwarding data. 
 

8.6 Monitoring and observability of asset runtime  
  
Observability in modern service-based systems is characterized by its complex execution and 
implementation. During the asset runtime—the asset being an operating system, compute node, 
network switch, workload, or other monitorable entity—the system can be in numerous states and 
experience many transitions. To properly characterize the system runtime, the system should provide 
sufficient signals that aptly describe the execution context. In general, the following signals (as defined 
in Section 8.4) are captured: traces, metrics, and logs. Traces are typically composed of spans, which 
are individual units of work. Spans are connected in a tree-like structure, where the root span is the 
entry point of the request, and the leaf spans represent the exit points. The spans are usually 
represented in a JSON format and are the easiest to describe as well-structured logs. Spans within the 
same trace all share the same trace identifier and are hierarchically connected via a parent identifier, 
which contains the span identifier (a unique identifier of a span) of the span’s parent. In distributed 
tracking, context propagation is a core concept that allows for spans to be assembled into a single 
trace regardless of where they were generated. The context is an object storing information that allows 
us to correlate related spans and associate them with a trace. Propagation is the process of passing 
context between services. 
  
Each observable asset must produce and emit some of the above-mentioned signals. This process is 
called instrumentation. There are three main kinds of instrumentation corresponding to different 
integration considerations: 

 
11 https://prometheus.io/docs/prometheus/latest/querying/basics/ 
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● Native instrumentation: A system component is instrumented out-of-the-box, i.e., the 
component was instrumented at development time. 

● Automatic instrumentation: A system component may be instrumented by applying additional 
external dependencies that automatically plug in into the component and instrument it. 

● Manual instrumentation: A system component must be manually adopted by changing the 
component and reporting the relevant telemetry. 

  
To ensure portability and interoperability, a set of telemetry standards and specifications are normally 
adopted. The specification provides a set of rules, guidelines and requirements that the resulting 
implementations should follow. The specifications define API, SDK, as well as data model specifications. 
An example of such a specification is the OpenTelemetry12 specification. 
 
 

8.7 Fine-grained monitoring in network switches  
 
One of the innovations of the ACES monitoring framework is its tight integration with the network sub-
components. Specifically, we will leverage the computational capabilities of network data plane devices 
(including programmable switches and SmartNICS/DPUs) to improve network observability.  
  
The ACES network switches will compute fine-grained, flow-based metrics, per packet, directly in the 
data plane. The rationale for our design is as follows. When deployed in an EMDC edge at Terabit traffic 
speeds, conventional server-based solutions can only monitor a small subset of traffic for its 
downstream applications, as they are limited to a few Gbps packet processing at best. Network traffic 
needs thus to be sampled (at very low sampling rates) to meet the capabilities of the monitoring server. 
By observing and computing in-network statistics over all network traffic in the network data plane, 
the ACES monitor records are richer than the sampling-based records generated by traditional 
systems, enabling new and improved network monitoring applications.  
  
The ACES network telemetry data is to be considered along three axis, which we describe next (and is 
further detailed in Deliverable D3.1).  
   
Flow type. The ACES network switch monitor will compute metrics for multiple flow keys. Currently, 
we are considering 4 types of keys: [MAC src, IP src], [IP src], [IP src, IP dst], and [5-tuple].   
  
Flow atoms. The ACES switch stores telemetry data as “flow atoms”. These are specialized counters 
pertaining to a specific flow key. At the moment, we consider three flow atoms: number of packets, 
number of bytes, and squared number of bytes. These atoms are maintained in the switches’ stateful 
memory and are used to compute several statistics.  
  
Flow statistics. For generality, the ACES switch will compute a diverse set of statistics of two types: 
unidirectional (1D), tracking outbound traffic, and bidirectional (2D), considering both inbound and 
outbound traffic. The 1D flow statistics considered include weight, mean, standard deviation, time 
intervals, etc. The 2D statistics include magnitude, radius, approximate covariance, and correlation 
coefficient.  
  
The goal for maintaining telemetry information considering multiple types of keys, storing multiple 
counters, and computing a multitude of statistics, is generality. Certain applications (e.g., traffic 
engineering), require coarser-grained information (e.g., aggregated per destination) to decide how to 
shift traffic to improve network utilization. Others required fine-grained information (e.g., for each 
containerized application), to understand application dynamics. More complex applications, such as 
intrusion detectors used for network security, require a diversified set of information (both fine- and 
coarse-grained) to detect attacks. 
 
 

 
12 https://opentelemetry.io/docs/specs/ 
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8.8 Periodic and event-driven monitoring  
 
The ACES monitoring framework will employ both periodic and event-driven approaches. For instance, 
the enriched records mentioned in the previous section can be sent to the network control plane or to 
other nodes of the ACES monitoring infrastructure either periodically or in a push-based manner. For 
the latter, we will investigate the integration of a traffic change primitive in the network switches.  
 
Traffic changes are commonly associated with events that require special attention from the operator. 
They may be an indicator of a malicious attack on the network, of a bottleneck caused by a flash crowd, 
or can be a sign of persistent congestion. The ability to detect traffic changes fast and efficiently is 
therefore a fundamental requirement of many network operation tasks. A change detector primitive 
avoids a difficult operational question: what should be the periodic timer interval? If too large, one may 
miss important events (e.g., an attack); if too small, it will generate unacceptable network overhead. A 
change detector is thus the enabler for the event-based mechanism we plan to integrate into ACES. 
 
The challenge is implementing this primitive on the very restrictive compute and memory environment 
that is a network switch. Our approach is the use of sketches [44,45,46]. Sketches are space-efficient 
and provide probabilistic memory-accuracy guarantees, enabling the design of efficient and scalable 
monitoring solutions for the network data plane. Several sketch-based systems have been recently 
proposed, running different network monitoring tasks at line rates in high-speed server platforms or on 
commodity switches. These modern systems are, however, restricted to heavy-hitter variants, and 
none has considered the general problem of change detection we will consider in ACES. 
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9 Cognitive Framework 

The cognitive framework within the ACES platform is designed to enhance the edge data center with 
autopoietic capabilities, allowing it to self-maintain in an autonomous manner. This capacity for 
autopoiesis ensures that the EMDCs can adaptively manage their own resources for optimal 
performance, resilience, and efficiency, mirroring living systems' ability to be self-sustaining. In this 
regard, the cognitive framework facilitates advanced cognition in the systems software stack by taking 
into account monitoring data, learning from previous events and interactions, and making informed 
decisions to maintain optimal system conditions. 
 
The cognitive framework's capabilities extend to include knowledge acquisition, whereby the system 
continuously learns from the environment and user interactions. It processes this information to 
understand the patterns and feedback, thereby enabling predictive analytics and prescriptive actions 
to maintain system health and manage the workload dynamically. With an embedded machine learning 
lifecycle management, the framework supports continuous integration and deployment (CI/CD) of AI 
models, ensuring that they are always up-to-date and trained on the latest data. 
 
Additionally, the cognitive framework includes a feedback loop mechanism that enables the system to 
monitor its own performance and take corrective actions autonomously. This loop, driven by monitoring 
tools and AI-driven analytics, enables a proactive response to potential issues, thereby maintaining 
system reliability and stability. As part of cognition, the framework ensures data-driven decision-
making that aligns with the broader organizational objectives and performance metrics, empowering 
the EMDC to act and react in an intelligent and informed manner. 
 
Finally, the cognitive framework promotes a symbiotic relationship between different EMDCs and the 
cloud, leveraging particular high-performance resources (Cloud) for heavy-duty processing and 
storage while maintaining edge-specific operations for real-time and low-latency tasks. The achieved 
balance enables a seamless execution and scalability along with a distributed approach to data 
processing, where the offloading decisions will be made by the cognitive engine based on workload 
requirements and resources availabilities and conditions. 

9.1 Autopoiesis and predictive analytics 
The foundation for autopoiesis is the detailed monitoring to continuously collect data on every aspect 
of an EMDC's operation. This involves the monitoring infrastructure described in Chapter 8 which will  
be implemented to aggregate and store the  high-volume data, feeding it into the cognitive framework 
for processing and analysis. 
 
With data collected, the next step is for the cognitive framework to analyse and interpret this 
information, identifying patterns and anomalies. Tools like Apache Spark can be used to handle large-
scale data analytics, applying algorithms to recognize normal operating parameters and detect 
deviations.  
 
Leveraging historical and real-time data, the cognitive framework employs predictive analytics to 
forecast future conditions and potential issues before they arise. For example, it may predict resource 
shortages, potential component failures, or periods of high demand using time-series forecasting 
models or AI-based anomaly detection systems.  
 
Based on these details a feedback loop mechanism will be provided in order to enable a self-regulating 
EMDC. Driven by the insights gained from monitoring data and predictive analytics, the cognitive 
framework determines prescriptive actions, adhering to a set of predefined rules, objectives, or learned 
experiences. These actions are aimed at maintaining system health, such as triggering automated 
scaling to meet increased demand, redistributing loads across servers, or initiating preventive 
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maintenance. Decision-making is supported by AI models that evaluate multiple scenarios and their 
potential impact on the system's performance and health. 
 

9.2 ML models for the Edge 
 
Edge-specific ML models must address unique challenges such as limited computational power, 
constrained memory, sporadic connectivity, and latency-sensitive applications. The nature of edge 
computing favors algorithms that can operate with high efficiency on small datasets, often in real-time. 
For example, decision tree-based models or compact neural networks are preferable for such 
constraints and can be implemented using libraries like Scikit-learn or TensorFlow Lite. Anomaly 
detection and predictive maintenance are typical uses of ML at the edge, where immediate processing 
is critical, leveraging models such as Isolation Forests or LSTM neural networks.  
 
To facilitate lightweight ML models for edge environments, we must consider methods that reduce 
model size and complexity. One approach is model compression, which can be achieved using pruning 
techniques supported by libraries like TensorFlow’s Model Optimization Toolkit, which streamline the 
network architecture by removing unnecessary weights. Quantization, done via TensorFlow Lite or 
PyTorch’s torch.quantization, can also reduce the precision of the numbers used in the model, thereby 
speeding up inference times and decreasing memory usage. Another technique to explore is splitting 
computation through cloud-edge collaboration: computing partially at the edge while offloading more 
complex processing to the cloud. 
 

9.3 Edge Computing for ML 
 
In the context of Edge Computing for AI-based applications, state-of-the-art collaborative and 
distributed machine learning (ML) paradigms such as Federated Learning (FL) and Split Learning (SP) 
can greatly benefit from the ACES platform, owing to its intelligent design and distributed edge cloud 
computing capabilities. 
 
Federated learning (FL)13 is an innovative collaborative ML approach. In FL, clients train model updates 
locally based on their data (and a shared global model), then send these updates to a central 
aggregator. This aggregator combines them into a new global model, which is redistributed to clients 
for further training iterations. FL is efficient and scalable, distributing training across numerous clients 
and executing it in parallel. Crucially, by allowing clients to retain their training data locally, thus, FL 
enhances privacy of clients’ data. This aspect is vital for compliance with privacy regulations like the 
GDPR and is generally beneficial when handling personal and sensitive data. Applications of FL include 
next-word prediction for mobile keyboards, medical imaging, and intrusion detection systems. 
 
Split learning (SL)14, another emerging collaborative ML paradigm, trains or infers ML models without 
sharing raw data between clients. In a typical SL setup, each client trains a partial deep network, a 
designated cut layer. The outputs at this layer are sent to another entity (server or client), which 
completes the training. This process ensures that raw data privacy is maintained, as only specific 
gradients from the cut layer are shared. The training continues until the model is fully developed without 
compromising the privacy of raw data. 
 
The ACES platform facilitates easy deployment, computational efficiency, and security for these 
emerging collaborative ML paradigms. Its distributed edge infrastructure enables multiple clients in FL 
and SL to collaboratively train ML models in an efficient and privacy-preserving manner. For instance, 
each client in an ACES node can adapt flexibly to the dynamic and heterogeneous computing and 
storage resource demands. 
 

 
13 https://federated.withgoogle.com/ 
14 https://www.media.mit.edu/projects/distributed-learning-and-collaborative-learning-1/ 
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9.4 Combining Swarm Algorithms with AI/ML 
 
The combination of AI/ML with swarm algorithms can lead to sophisticated models capable of managing 
distributed resources in edge computing scenarios. Swarm intelligence principles, derived from 
organisms' natural behaviour like birds flocking or fish schooling, can be applied to solve optimization 
problems from the bottom up. These techniques can be combined with AI using, e.g., reinforcement 
learning (RL) algorithms, accelerating the learning process through hyperparameter tuning. This has 
already shown interesting results in the context of workload placement but most of the related works 
have focused mainly on theoretical studies [47] in various libraries like Stable Baselines or 
Reinforcement Learning Toolkit (RLTK) or others15. By using RL in conjunction with swarm intelligence, 
distributed systems can autonomously determine optimal configurations and resource allocations, 
which plays an important role in the dynamic environments of edge computing. 
 

9.5 Explainability in AI 
 
Explainable AI (XAI) refers to artificial intelligence systems designed to be transparent and 
understandable to humans. XAI aims to make AI model outputs more interpretable, fostering user trust 
and comprehension. The imperative for explainability in AI within the edge ecosystem lies in its ability 
to provide transparency and build trust amongst users. Within ACES, we are exploring technologies to 
enhance understanding of how the ACES cognitive engine functions, including the relationships 
between internal and external data points and machine-based decision-making. For example, Libraries 
such as SHAP offer capabilities to demystify the opaque decision-making processes of machine 
learning models, enabling users to understand and trust their automated operations. For neural 
networks, techniques like gradient-based saliency maps or class activation mappings, which are 
available in libraries like tf-explain, offer visual interpretations of which parts of the input contribute to 
the model's predictions. Explainability can be taken into account in the MLOps lifecycle, ensuring that 
it is rather a consistent feature of the AI systems16 deployed at the edge. 
 

9.6 MLOps and model lifecycle management 
The ACES cognitive framework is designed to streamline the entire machine learning (ML) model 
lifecycle, enabling everything from data preparation and model training to deployment and monitoring. 
By implementing an MLOps approach, EMDCs can effectively manage the deployment of AI models at 
the edge, ensuring that they are consistently trained on the latest data and optimized for the unique 
constraints of edge environments. With the infrastructure required to support ML models continuously 
evolving, this MLOps framework ensures agility and adaptability through automated workflows and 
standardized processes. Thus, the edge micro data centre benefits from the MLOps capabilities by 
minimizing human intervention and providing a systematic way to track model versioning and 
performance over time. 

Specifically, the MLOps framework within EMDCs defines a common set of services and functions that 
are applicable across various ML models, thereby avoiding redundancy and simplifying the service 
architecture. Through REST APIs and supporting libraries, it offers interfaces for ML model registration, 
training, deployment, and serving, thereby supporting a seamless transition from model development 
to production. This not only accelerates the time-to-market for AI-powered applications at the edge 
but also ensures these applications are robust and scalable. 

The ACES MLOps component will be composed of the following subcomponents: 

• The Model trained Registry interface: Users can register different ML models after they trained 
the models. 

• The ML Training interface: the interface to integrate different ML models’ training methods. 
With the integration, users can use the unified format to call the different ML training models 

 
15 https://neptune.ai/blog/the-best-tools-for-reinforcement-learning-in-python 
16 https://github.com/mlflow/mlflow/pull/3513 
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and set up the related training configuration especially for distributed ML models. For example:  
when to trigger training, the parameters of the training process, etc. 

• The ML Serving interface: the interface for prediction/inference. With this interface, users can 
use the unified format to call the different ML prediction methods. 

• The ML validation interface: the interface to integrate different ML models validation methods. 
With this interface, users can use the unified format to use the different ML validation function 
or use some default validation methods in the cognitive framework. 

• The ML model provider interface: for integration of different ML models. It provides a unified 
API  for the users to choose and use a ML model from those registered in the cognitive 
framework.  

• The ML monitoring interface: responsible for the communication and aggregation of 
distributed training nodes, to track all the ML process data and provide different information 
for monitoring services. 

• The ML Security interface: helps setting up security parameters and integrate security specific 
methods. 

 

9.6.1 Cognitive framework tools and open-source libraries 
 
The Cognitive Framework will be developed using the python language, supporting different python-
based libraries like scikit learn and TensorFlow. The Flask API will be used to develop all the APIs. 
 

 
Figure 9.3: Cognitive framework tools 

 
Each component of the cognitive Framework will include metadata collection, using kafka message 
queue technology. For ML model related training, serving, and deployment components, we will use 
the MLflow and kubeflow opensource tools. For the object relational mapper (ORM), we plan to use 
SQLAlchemy for python to communicate with a postgresDB. 
 

9.6.2 MLflow and kubeflow tools 
 
The Cognitive Framework will provide the whole ML model lifecycle management. This includes the 
model register, model tracking, model training, model deployment, model serving, and model 
monitoring. 



 
 

 

Autopoietic Cognitive Edge-cloud 
Services 

D2.1 – ACES Architecture Definition 
 Page 61 of 75 © 2023 

 
 

Figure 9.4: MLFlow and Kubeflow integration 
 
To integrate different ML models and support different functions of the ML lifecycle, we plan to use 
and improve upon open-source tools MLflow and Kubeflow.  
 
MLflow focuses on track model runs, including model parameters, metrics, results, data used, and code. 
It provides the model register and model tracking components that fit our cognitive framework 
functions requirement. It uses the jupyter notebook to save the model code and parameters. After the 
training process, all model related information is recorded. 
 
The Kubeflow tool is dedicated to making deployments of machine learning (ML) workflows on 
Kubernetes simple, portable, and scalable. It provides a straightforward way to deploy best-of-breed 
open-source systems for ML to diverse infrastructures. 
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10 Security and Privacy  
Cloud-edge services process and store large volumes of (sensitive) data, making them vulnerable to 
cyber-attacks such as data breaches and unauthorized access, leading to potential misuse of data, 
data loss or data privacy violation. Moreover, the inherent interconnectedness of cloud-edge networks 
makes them susceptible to network-based Distributed Denial of Service (DDoS) attacks. Such attacks 
can overload network resources, severely disrupting service availability. Another critical concern is the 
risk of Man-in-the-Middle (MitM) attacks. These occur during data transfers between edge devices 
and cloud servers, potentially compromising the integrity and confidentiality of the data. Furthermore, 
the complexity of various regional and industry-specific regulations, such as the General Data 
Protection Regulation (GDPR), poses significant challenges in cloud-edge settings. This complexity is 
exacerbated when data is processed and stored across multiple locations, complicating compliance 
efforts.  

In ACES, we recognize that protecting systems, services, and data against security and privacy threats 
is crucial to secure the system, comply with regulations, and meet customer requirements. Therefore, 
we aim to incorporate comprehensive security features into the system to ensure that ACES is secure 
by design. In the following sections, we will identify specific security and privacy requirements by 
carefully considering the use-case requirements (defined in Section 2.3) and the ACES architecture 
(Section 3.2). We provide a systematic design for ACES security components based on these 
requirements. This design is aimed at ensuring that ACES is resilient to cyberattacks, thereby 
safeguarding the availability, integrity, confidentiality, and privacy of ACES systems and data. We aim 
to prevent unauthorized access, service disruptions, data leakage, and data loss. 

  

10.1 Security requirements  
 
We are guided by three general security and privacy requirements: 
 
● Authentication: The system should have robust authentication mechanisms such as access 

controls, secure communication and data encryption to ensure only authorized parties can access 
the service and their data.  

● Availability and Integrity:  The system should ensure that the computing services and data are 
accurate, consistent, and reliable against cyberattacks. The system should implement measures 
to detect and prevent unauthorized access and modification of data. Further, the system should 
have effective network intrusion and anomaly detection to monitor network traffic, nodes, and 
containers, to detect and mitigate suspicious behaviours caused by cyberattacks such as DoS 
attacks. 

● Privacy: The solution must comply with data privacy regulations such as GDPR. Further, the 
solution should be able to prevent data leakage to any unauthorized parties. 

10.2 Overview of security and privacy component  

To achieve the requirements mentioned above, we provide a comprehensive multi-layer security 
solution aligned with the overall ACES architecture provided in Section 3. Figure 10.1 provides a high-
level overview of the security components. This consists of five sub-components that will be 
elaborated in the following sections.   
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Figure 10.1: Overview of ACES Security Component 

  

10.3 Authentication  

Authentication is essential for any service to protect access from unauthorized parties. Given the 
remote locations of ACES nodes, privacy is also a requirement for ACES authentication. The proximity 
between ACES nodes and clients during authentication can compromise user privacy, potentially 
revealing sensitive information such as location data. Among the requirements of ACES are client 
privacy and compliance with European laws, namely the GDPR. We will develop anonymous 
authentication schemes leveraging public key encryption that will explore the introduction of 
pseudonyms for efficiency. The methods to be deployed should also preserve client privacy after 
possible revocation, introducing a new abstraction of non-revocation proofs. We will follow a fully 
distributed design, respecting the principles of Verifier Local Revocation (VLR), a crucial aspect for 
ACES to maintain scalability and avoid reliance on centralized services that can become single points 
of failure. 

 
10.4 Audit, secure storage and backup  

ACES will ensure fault tolerance through the replication of its services and storage. The ACES data and 
intelligence will be replicated horizontally across edge sites, operating within a zero-trust environment. 
Given the vulnerability of edge sites to failures, corruptions, or attacks due to their exposed nature, an 
inherent security risk could jeopardize the fidelity of ACES replication. We will, therefore, introduce 
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auditing tools to assess the correct level of ACES replication at the edge. In response to this challenge, 
we will develop storage-proof mechanisms designed to audit the location of data in distributed 
settings, such as the edge environment. The cryptographic proof should pinpoint data locality with 
millisecond precision despite the variations in network delays at the edge, and it should be able to 
detect SLA violations. This auditing tool further enables distributed entities to build trust at the edge. 

 

10.5 Network and hardware security  

In ACES, we will develop an ML-based attack detector with two key characteristics. First, it is based 
on the analysis of network meta-data, instead of payload traffic. As such, it can be used to detect 
attacks that use encrypted traffic, in contrast to conventional signature-based malicious traffic 
detectors that work only on unencrypted traffic (e.g., Snort). Second, it works by tracking deviations 
from regular traffic patterns to detect attacks, enabling the detection of zero-day attacks. To address 
the main performance of existing systems –the overhead of the ML pipeline processing – we will 
develop a cross-platform malicious traffic detector. The key idea is to offload the detection process to 
the network data plane. Specifically, we aim to run the ML feature computation in a network switch. 
The ACES switch should process a diverse set of flow statistics as ML features of types, without the 
need to inspect packet payloads. By computing features in the switch, we avoid the required packet 
sampling of state-of-the-art detectors to improve detection performance in the ACES Terabit network. 

  
10.6 Node and container security  

Container-based applications are increasingly being adopted due to their convenience in development, 
deployment, and management. In ACES, containers are fundamental elements for deploying ACES 
agents and services. However, recent studies show that containers are vulnerable to various security 
attacks e.g., Authentication Bypass, Disclosing Credential Information, and Denial of Service (DoS) 
attacks. Such attacks allow attackers to open a reverse shell or establish a backdoor within a container 
by exploiting specific vulnerabilities. The successful exploitation grants the attacker complete control 
over the container. Further, Disclosing Credential Information Attacks strive to uncover usernames, 
passwords, or the directory structure of the underlying OS such that the attacker can impersonate a 
legitimate user, altering, deleting, or stealing valuable data. DoS Attacks target containers and 
container services, rendering them inoperable by exhausting the containers or host’s resources. An 
illustrative example is a clandestine cryptocurrency miner operating within a container, excessively 
consuming resources and inhibiting the container’s primary functions. To secure the ACES system, we 
will build a framework that involves a systematic method to effectively analyse and evaluate anomaly 
detection models. We will perform extensive analyses regarding the different types of attacks and 
defenses existing for the container ecosystem. This will provide a clear view regarding the state-of-
the-art attack techniques and defenses for container systems. More importantly, we will develop novel 
defense approaches to prevent state-of-the-art attacks effectively. Our approach will leverage 
advanced techniques, such as vulnerability scanning and dynamic deep-learning-based anomaly 
detection, to detect not only vulnerabilities but also attacks in real time. To this end, our container 
security component is designed to monitor and safeguard containers against state-of-the-art threats, 
such as privilege escalation, credential disclosure, or DoS attacks.  
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10.7 ML security  

Machine Learning (ML) is pivotal in powering ACES intelligence agents and services. However, ML 
algorithms and frameworks are vulnerable to security and privacy threats. In ACES, we will develop 
components incorporating multiple security mechanisms to defend against data and model poisoning 
attacks, as well as inference attacks, in distributed learning systems like federated learning—a key 
potential service within ACES—and AI/ML-based network control. These components should bolster 
security against backdoor and inference attacks.  

In backdoor attacks, adversaries subtly manipulate the global model, causing specific inputs the 
attacker chooses to produce incorrect predictions. An adversary might also introduce multiple 
backdoors simultaneously. Meanwhile, in inference attacks, adversaries attempt to glean information 
about clients' local training data by analysing their model updates. To counter backdoor attacks, we 
propose a comprehensive strategy that employs cutting-edge defense techniques, including model 
clustering, clipping, and parameter noising. Additionally, we integrate several privacy measures to 
thwart inference attacks, such as secure two-party computation techniques (STPC), trusted 
computing, and blockchains. These measures restrict access to local model updates, thereby hindering 
potent inference attacks. 
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11 System integration  
This section summarises the ACES components interfaces and APIs specifications along with 
their main responsibilities and technologies to be based upon. Furthermore, it describes the 
integrated development and testing environment upon which the ACES solution platform is 
built; including the Continuous Integration/Continuous Delivery processes put in place to 
support all the development, testing, integration, and deployment activities. 
 

11.1 ACES components, interfaces and interactions  
 
In total, a set of 9 components was defined, as follows: 

- The ACES frontend component, including the Authentication and Authorization 
interface; 

- The Workflow Management Component for the definition of applications as graphs of 
microservices; 

- The Cognitive Engine and MLOps component; 
- The Orchestration component composed of a multi-cluster and a inter-cluster 

workload placement based on swarm intelligence; 
- The Data Management component featuring the decentralized storage functionality; 
- The Resource Management and Containerization Runtime component; 
- The Networking component; 
- The Monitoring and Telemetry component; 
- The Security component. 

 
Each of the components is capable of performing a specific set of actions / functionalities and 
addressing a specific set of requirements. On the other hand, the conceptual representation 
of ACES architecture aims at integrating all identified components into a logical diagram, 
facilitating a complete information flow, comprising the preliminary version of the conceptual 
architecture of the integrated platform.  
 

The architecture is designed in a modular way facilitating easy maintenance, modifiability and 
extensibility, and can thus be used and easily extended and customised accordingly in order 
to include end users, data scientists and stakeholders needs not considered until now, 
including new inputs to reach different needs of interested parties, as well as new ones. 

Figure 3.1 (Section 3.1) depicted the high-level ACES architecture diagram including the main 
architectural components, information flows and interactions among them. The ACES 
architecture follows a layered approach which aims at ensuring interoperability among all 
involved components, putting emphasis on the way that pipelining of information is supported, 
safeguarding smooth interoperation of the supported services. 

The ACES architecture is defined in such a way that every component can be independent 
while bringing a particular functionality. Each component in ACES may consist of different 
internal software modules or sub-components while having the capability to interact with 
other components via a particular interface, usually an API. This sub-section will provide a 
summary of, per component: responsibilities, main technologies used, interactions with other 
components, and main interfaces. This is shown in the following tables. 

 



 
 

 

Autopoietic Cognitive Edge-cloud 
Services 

D2.1 – ACES Architecture Definition 
 Page 67 of 75 © 2023 

Name ACES frontend interface 

Description 

This component is responsible for providing the frontal 
interface of ACES platform featuring the authentication & 
authorization panel along with the connection to the different 
system or user level components 

Responsible Partner HIRO 

Function ACES frontend, authentication & authorization panel and 
centralization of the various ACES interfaces 

Subsystems Authentication & authorization, Centralization of interfaces 

Type of Interface Web, REST 

Technologies Django, React 

Interaction with 
components 

Workflow Management, Data Management, Cognitive Engine, 
Monitoring 

 
 

Name Workflow Management 

Description This component is responsible for enabling the creation of 
applications through workflows/graphs of microservices 

Responsible Partner MAR 

Core Partners HIRO, UL 

Function Workflow design, microservices connection in workflows, 
microservices packaging 

Subsystems - 

Type of Interface REST 

Technologies Prefect, Ryax, Airflow 

Interaction with 
components 

Data Management, Cognitive Engine, Orchestration, 
Resource Management 

 

Name Cognitive Engine 
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Description 
This component is responsible for selecting the right ML 
algorithms for the different aspects needed for the system 
and performing the MLOps for system and user-level needs 

Responsible Partner HIRO 

Function MLOps platform  

Subsystems Cognitive Engine and MLOps 

Type of Interface REST 

Technologies Kubeflow, MLFlow, Feast 

Interaction with 
components Data Management, Orchestration, Resource Management 

 

Name Orchestration 

Description This component is responsible for enabling the orchestration 
in either the multi-cluster or the inter-cluster scenario 

Responsible Partner LAKE 

Core Partners UPM, HIRO, UL 

Function Container orchestration and scheduling 

Subsystems multi-cluster scheduler, single cluster scheduler 

Type of Interface REST 

Technologies multi-cluster scheduling or Kubernetes scheduler 

Interaction with 
components Data Management, Orchestration, Resource Management 

 

Name Data Management 

Description 
This component is responsible for managing the ACES 
knowledge base that captures the supply, demand, and 
current runtime state of the platform.  

Responsible Partner UPM 
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Core Partners MAR 

Function - 

Subsystems Knowledge model, property graph storage component, time 
series data storage component.  

Type of Interface REST 

Technologies MemGraph, InfluxDB 

Interaction with 
components 

Workflow Management, Orchestration, Resource 
Management 

 

Name Resource Management 

Description 

This component is responsible for i) application orchestration 
at the level of EMDCs and Kubernetes clusters and ii) EMDC 
and/or nodes’ management. Applications’ orchestration will be 
driven by the cognitive engine component  

Responsible Partner SIXSQ 

Core Partners HIRO 

Function configure a Container-as-a-Service Kubernetes endpoints, 
launch applications of the Kubernetes cluster 

Subsystems Kubernetes, telemetry tools 

Type of Interface REST 

Technologies Nuvla/NuvlaEdge. Kubernetes, CRIO 

Interaction with 
components Workflow Management, Cognitive engine 

 

Name Monitoring and Observability 

Description 

This component is responsible for providing monitoring and 
observability aspects to the different layers of the software 
stack on various levels (i.e., edge, cloud, application, and 
network layer) 

Responsible Partner UL 
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Function Monitoring data collection, instrumentation, telemetry, 
anomaly detection, alerting, data analysis and visualization 

Subsystems 
Monitoring and Observability Core, Push Gateway, Data 
Forwarder, Anomaly Detection, Alert Manager, Service 
Discovery Mechanism, Data Analysis, Export and Visualization 

Type of Interface REST, graphical (web), custom pluggable 

Technologies Prometheus, Thanos 

Inputs ACES monitoring and telemetry data, metrics 

Interaction with 
components All 

 

Name Networking 

Description This component is responsible for enabling the networking 
capabilities for the edge micro data centers 

Responsible Partner INESC 

Function  - 

Subsystems Single-cluster networking and multi-cluster networking 

Type of Interface REST 

Technologies  Cilium, Istio, Submarinner, ONOS. P4, P4RT 

Interaction with 
components 

Workflow Management, Orchestration, Resource 
Management 

 

Name Security 

Description This component is responsible for protecting ACES systems, 
services, and data against security and privacy threats 

Responsible Partner TUD 

Function  Security and privacy solutions for monitoring and protecting 
ACES components, services, and data 
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Subsystems Secure authentication and storage, network security, node 
and container security, ML security 

Type of Interface Web, REST 

Technologies Sysdig, NIDS, Anomaly Detection 

Inputs ACES metrics 

Interaction with 
components 

Workflow Management, Orchestration, Resource 
Management 

 

11.2 ACES platform integration environment  
 
The ACES platform ensures consistency and quality through a structured process including integration, 
testing, release, distribution, and deployment. The process is designed to adhere to high-quality 
standards, and it includes standard approaches to packaging, distribution, deployment, and 
documentation. ACES uses Continuous Integration and Continuous Deployment (CI/CD) to automate 
these processes. The benefits of this system include quicker delivery and feedback, less manual effort, 
and fewer errors. 
 
Whenever a change is made to a component, an automatic pipeline is initiated consisting of the 
following steps: 
1. Compiling the component into a binary file from its source code. 
2. Running unit tests and checks on the component. 
3. Packaging the component in Docker Images, and creating Helm charts for Kubernetes deployment. 
4. Deploying everything into a test environment. 

 
To enable this, an on-site infrastructure is being assembled, including: 
● A GitLab server for managing source code and collaboration. 
● A Harbor server for hosting Docker Images and Helm charts. 
● A Kubernetes cluster to serve as the testing ground. 
● Tools like Kaniko for Docker Image builds. 
● Other infrastructure tools such as LDAP, a mail server, and logging and analysis tools. 
 
There are also internal tools developed to streamline the pipeline, such as 'cicd-scripts' for job 
templates, a 'cicd-helper-image' that includes necessary tools, and a Helm 'common' chart for simpler 
Helm chart development. 
 
Pipeline runs are routinely executed as parts of components are updated, producing reports and 
artifacts that are stored on GitLab. However, not all these builds are stable or ready for release; they 
are often for development and integration checks only. A release occurs once the version is stable and 
verified—this action is facilitated by GitLab's "Releases" feature, allowing developers to automate the 
release process by labelling the version, noting the release, and thus triggering the pipeline and storing 
the final artifacts on the Harbor repository. All ACES component releases are maintained in a centralized 
public repository, ensuring unified access and management. 
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The ACES platform is built to work across different settings, including mainly on-premises and edge 
micro data centres, as well as cloud-based infrastructures. Due to its versatility and the range of 
components it includes, there's a need to employ simple and reliable deployment methods that 
minimize the risk of errors. To achieve this, Infrastructure as Code (IaC) tools like Terraform are used. 
Terraform is the chosen tool because it is highly regarded for setting up infrastructure efficiently and 
safely. Being an open-source tool, it has a large support community and works with various 
infrastructures. 
 
The deployment process for ACES is split into two main stages. In the first stage, Terraform scripts are 
pulled from the central ACES Git repository to set up the infrastructure where the ACES components 
will be housed. In the following stage, Helm charts are employed to install and configure these 
components in the Terraform-prepared environment. Anyone deploying the ACES platform will just 
need the Terraform and Helm clients, as well as the necessary resources for ACES to operate. 
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12 Conclusion  
This deliverable presented the high-level view of the architecture of ACES along with the different 
research areas and components related to the ACES platform. The architecture is generic enough to 
remain as is until the end of the project, whereas the refinement of the list of components will take 
place in the upcoming months. The final set of components to be implemented will be presented in the 
upcoming deliverable D2.2a ACES kernel components. In case there are updates in the ACES 
architecture, these will be presented in that intermediate deliverable. 
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